Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid To ether

Non-Kolbe Electrolysis of Carboxylic Acids to Ethers, Esters, and Alcohols... [Pg.117]

The products of addition of nitric acid to ethers also possess the same oxonium structure ... [Pg.473]

The nonKolbe electrolysis can lead to complex product mixtures, especially when there are equilibrating carbenium ions of about equal energy involved. On the other hand, the conversion of carboxylic acids to ethers, acetals, esters or alkenes can become very selective when the intermediate carbocation is... [Pg.649]

Add cautiously 15 ml. of concentrated sulphuric acid to 50 ml. of water in a 100 ml. distilling-flask, and then add 10 g. of pinacol hydrate. Distil the solution slowly. When about 40 ml. of distillate (consisting of pinacolone and water) have been collected, and no more pinacolone comes over, extract the distillate with ether. Dry the extract over sodium sulphate. Distil the dry filtered extract carefully, with the normal precautions for ether distillation (p. 164). When the ether has been removed, continue the distillation slowly, rejecting any fraction coming over below 100 . Collect the pinacolone, b.p. 106 , as a colourless liquid having a peppermint odour. Yield, 4 5-5 o g. A small quantity of higher-boiling material remains in the flask. [Pg.152]

Now cool the mixture thoroughly in ice-water, and run in over a period of 45 minutes a solution of 6 o g. of dry salicylic acid in 75 ml. of dry ether. When the addition of the acid to the stirred solution is complete, heat the mixture under reflux on the water-bath for 15 minutes to ensure completion of the reduction. Then thoroughly chill the mixture in ice-water, and hydrolyse any unused hydride by the slow addition of 50 ml. of ordinary undried ether, followed similarly by 75 ml. of dilute sulphuric acid. [Pg.156]

Place the distillate in a separating-funnel and extract the benzonitrile twice, using about 30 ml. of ether for each extraction. Return the united ethereal extracts to the funnel and shake with 10% sodium hydroxide solution to eliminate traces of phenol formed by decomposition of the benzenediazonium chloride. Then run off the lower aqueous layer, and shake the ethereal solution with about an equal volume of dilute sulphuric acid to remove traces of foul-smelling phenyl isocyanide (CaHjNC) which are always present. Finally separate the sulphuric acid as completely as possible, and shake the ether with water to ensure absence of acid. Run off the water and dry the benzonitrile solution over granular calcium chloride for about 20 minutes. [Pg.192]

Toluene-/ sulplionamide is almost insolubb in cold water, but dissolves readily in sodium hydroxide solution (as the sodium derivative) aid is immediately reprecipitated on the addition of strong acids. To show the formation of the sodium derivative, dissolve about o-2 g. of metallic sodium in about 10 ml, of ethanol, cool the solution, and then add it to a solution of 1 g. of the sulphonamide in 20 ml. of cold edianol. On shaking the mixture, fine white crystals of the sodium derivative, CH,C,HjSO,NHNa, rapidly separate, and may be obtained pure by filtering at the pump, and washing firet with a few ml. of ethanol, and then with ether. [Pg.252]

The method of hydrolysis depends on the nature of the product. It is usually sufficient to add dilute sulphuric acid to the ethereal solution and to shake thoroughly, when the magnesium enters the aqueous solution, whilst the organic compound remains in the ether. Alternatively, however, the ethereal solution may be poured on to ice and water, and then treated with dilute sulphuric acid. Should the product be affected by this acid, the hydrolysis can be carried out with an aqueous solution of ammonium chloride. In the following examples the hydrolysis is usually shown as a simple double decomposition... [Pg.281]

Some less reactive tertiary amines can be mixed with an excess of methyl toluene-/)-sulphonate, m.p. 28 , and the mixture (without a solvent) heated to a much higher temperature. The mixture is allowed to cool, but before solidification occurs, it is thoroughly stirred with ether to extract unused sulphonate, and the insoluble quaternary metho-toluene-/)-sulphonate may then crystallise. If ciystallisation does not occur, dissolve this residue in ethanol and treat one portion with ethanolic picric acid (to precipitate the methopicrate) and another portion with cold concentrated ethanolic sodium iodide (to precipitate the methiodide). (M.ps. of the siilphon.ates, pp. 553 -554.)... [Pg.378]

Anilides. Dilute the acid chloride with 5 ml. of pure ether (or benzene), and add a solution of 2 g. of pure aniline in 15-20 ml. of the same solvent until the odour of the acid chloride has disappeared excess of aniline is not harmful. Shake with excess of dilute hydrochloric acid to remove aniline and its salts, wash the ethereal (or benzene) layer with 3-5 ml. of water, and evaporate the solvent [CAUTION ] Recrystallise the anilide from water, dilute alcohol or benzene - light petroleum (b.p. 60-80°). [Pg.361]

When the derivative is appreciably soluble in ether, the following alternative procedure may be employed. Dissolve the cold leaction mixture in about 60 ml. of ether, wash it with 20-30 ml. of 10 per cent, hydrochloric acid (to remove the excess of base), followed by 20 ml. of 10 per cent, sodium hydroxide solution, separate the ether layer, and evaporate the solvent [CAUTION/]. Recrystallise the residue from dilute alcohol. [Pg.362]

Add 4 0 g. (4 0 ml.) of pure anihne dropwise to a cold solution of ethyl magnesium bromide (or iodide) prepared from 1 Og. of magnesium, 5 0 g. (3-5 ml.) of ethyl bromide (or the equivalent quantity of ethyl iodide), and 30 ml. of pure, sodium-dried ether. When the vigorous evolution of ethane has ceased, introduce 0 02 mol of the ester in 10 ml. of anhydrous ether, and warm the mixture on a water bath for 10 minutes cool. Add dilute hydrochloric acid to dissolve the magnesium compounds and excess of aniline. Separate the ethereal layer, dry it with anhydrous magnesium sulphate and evaporate the ether. Recrystallise the residual anihde, which is obtained in almost quantitative yield, from dilute alcohol or other suitable solvent. [Pg.394]

Benzoates. Dissolve 0-5 g. of the amino acid in 10 ml. of 10 per cent, sodium bicarbonate solution and add 1 g. of benzoyl chloride. Shake the mixture vigorously in a stoppered test-tube remove the stopper from time to time since carbon dioxide is evolved. When the odour of benzoyl chloride has disappeared, acidify with dilute hydrochloric acid to Congo red and filter. Extract the solid with a little cold ether to remove any benzoic acid which may be present. RecrystaUise the benzoyl derivative which remains from hot water or from dilute alcohol. [Pg.436]

Dissolve 0-2 g. of fructose in 10 ml. of water, add 0-6 g. of cw-methyl-phenylhydrazine and sufficient rectified spirit to give a clear solution. Since the fructose may not be quite pure, warm the mixture slightly, allow to stand, preferably overnight, so that any insoluble hydrazones may separate if present, remove them by filtration. Add 4 ml. of 50 per cent, acetic acid to the filtrate it will become yellow in colour. Heat the solution on a water bath for 5-10 minutes, and allow to stand in the dark until crystalUsation is complete it may be necessary to scratch the walls of the vessel to induce crystalUsation. Filter the crystals and wash with water, followed by a little ether. RecrystaUise the orange-coloured methylphenylosazone from benzene m.p. 152°. [Pg.456]

Pour the reaction mixture cautiously into 400 g. of crushed ice and acidify it in the cold by the addition of a solution prepared by adding 55 ml. of concentrated sulphuric acid to 150 ml. of water and then coohng to 0°. Separate the ether layer and extract the aqueous layer twice with 50 ml. portions of ether. Dry the combined ethereal solutions over 50 g. of anhydrous potassium carbonate and distil the filtered solution thror h a Widmer column (Figs. II, 17, 1 and II, 24, 4). Collect separately the fraction boihng up to 103°, and the dimethylethynyl carbinol at 103-107° Discard the high boiling point material. Dry the fraction of low boihng point with anhydrous potassium carbonate and redistil. The total 3 ield is 75 g. [Pg.468]

Extract the acidified solution with ether, remove the ether and identify the phenol in the usual manner (see Section IV,114).f Add a few drops of bromine water or nitric acid to the aqueous layer and test for sulphate with barium chloride solution. [Pg.553]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]


See other pages where Acid To ether is mentioned: [Pg.458]    [Pg.459]    [Pg.458]    [Pg.459]    [Pg.20]    [Pg.27]    [Pg.94]    [Pg.133]    [Pg.141]    [Pg.160]    [Pg.163]    [Pg.164]    [Pg.165]    [Pg.165]    [Pg.168]    [Pg.168]    [Pg.196]    [Pg.259]    [Pg.329]    [Pg.330]    [Pg.420]    [Pg.245]    [Pg.299]    [Pg.357]    [Pg.252]    [Pg.311]    [Pg.315]    [Pg.442]    [Pg.461]    [Pg.469]    [Pg.488]    [Pg.607]    [Pg.609]    [Pg.705]    [Pg.760]   
See also in sourсe #XX -- [ Pg.3 , Pg.9 ]




SEARCH



Ether Acids

Ethers, acidity

To ether

© 2024 chempedia.info