Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid hydrolysis amine

These are not essential if the acid and amine obtained on hydrolysis are crystalline but crystalline derivatives of the acid and amine can be prepared by the standard methods for acids (p. 349) and amines (pp. 374, 376) respectively. [Pg.380]

In the above reaction one molecular proportion of sodium ethoxide is employed this is Michael s original method for conducting the reaction, which is reversible and particularly so under these conditions, and in certain circumstances may lead to apparently abnormal results. With smaller amounts of sodium alkoxide (1/5 mol or so the so-called catal3rtic method) or in the presence of secondary amines, the equilibrium is usually more on the side of the adduct, and good yields of adducts are frequently obtained. An example of the Michael addition of the latter type is to be found in the formation of ethyl propane-1 1 3 3 tetracarboxylate (II) from formaldehyde and ethyl malonate in the presence of diethylamine. Ethyl methylene-malonate (I) is formed intermediately by the simple Knoevenagel reaction and this Is followed by the Michael addition. Acid hydrolysis of (II) gives glutaric acid (III). [Pg.912]

The nucleophiles used are OH (32) [the 2-hydroxythiazole can also be obtained by acidic hydrolysis with strong mineral acids (33)], OR" (5, 8, 30, 34), SR" (8, 9, 12), ArSH (35), and amines (4, 7, 14, 33). Benzamide also reacts with 2-bromothiazole, yielding 2-benzamidothiazole (36). Sulfonamide also reacts with 2-halogenothiazoles in presence of a base and copper powder, yielding 2-sulfonamidothiazoles (37, 38). [Pg.567]

Section 20 17 Like ester hydrolysis amide hydrolysis can be achieved m either aque ous acid or aqueous base The process is irreversible m both media In base the carboxylic acid is converted to the carboxylate anion m acid the amine is protonated to an ammonium ion... [Pg.877]

It is generally accepted that transamidation is not a concerted reaction, but occurs through the attack of a free end on the amide group via aminolysis (eg, eq. 4) or acidolysis (eg, eq. 3) (65). Besides those ends always present, new ends are formed by degradation processes, especially hydrolysis (eq. 5), through which the amide groups are in dynamic equiUbrium with the acid and amine ends. [Pg.225]

An improved version of the amine hydrolysis process involves catalytic hydrogenation of 1,3,5-triaitrobenzene or 2,4,6-triaitrobenzoic acid in acetone solvent (138). Acid hydrolysis of 2,4,6-triaminobenzoic acid has been improved by addition of copper catalyst and gives phlorogluciaol in 80% yield (139). [Pg.383]

A number of disinfectants apparentiy owe their activity to formaldehyde, although there is argument on whether some of them function by other mechanisms. In this category, the dmg with the longest history is hexamethylenetetramine (hexamine, urotropin) [100-97-0] which is a condensation product of formaldehyde and ammonia that breaks down by acid hydrolysis to produce formaldehyde. Hexamine was first used for urinary tract antisepsis. Other antimicrobials that are adducts of formaldehyde and amines have been made others are based on methylolate derivations of nitroalkanes. The apphcations of these compounds are widespread, including inactivation of bacterial endotoxin preservation of cosmetics, metal working fluids, and latex paint and use in spin finishes, textile impregnation, and secondary oil recovery (117). [Pg.127]

Esters undergo hydrolysis and conversion to amides under the usual conditions, and amide side chains have also been formed from the acid and amine with DCCI. Acids have been formed from the corresponding spirohydantoins via ureido derivatives (Section 2.15.15.6.1), and undergo decarboxylation in the usual manner. [Pg.253]

The dibenzosuberyl ether is prepared from an alcohol and the suberyl chloride in the presence of triethylamine (CH2CI2, 20°, 3 h, 75% yield). It is cleaved by acidic hydrolysis (1 N HCl/dioxane, 20°, 6 h, 80% yield). This group has also been used to protect amines, thiols, and carboxylic acids. The alcohol derivative can be cleaved in the presence of a dibenzosuberylamine. ... [Pg.60]

Sulfenamides, R2NSR, prepared from an amine and a sulfenyl halide, " are readily cleaved by acid hydrolysis and have been used in syntheses of peptides, penicillins, and nucleosides. They are also cleaved by nucleophiles, and by Raney nickel desulfurization. ... [Pg.377]

The hydrolysis of amides to carboxylic acids and amines requires considerably more vigorous conditions than ester hydrolysis. The reason is that the electron-releasing... [Pg.481]

Heptyl perfluoroalkyltluoroacetate reacts with secondary amines such as piperidine Acid hydrolysis of the product yields hydrates of heptyl perfluoro-alkanoylfluoroacetate [14] (equation 15)... [Pg.426]

Acid hydrolysis of (i-perfluoroalkylvinylamines, prepared from secondary amines and perfluoroalkylacetylenes, yields p-aminovinyl perfluoroalkyl ketones as the major products [79] (equation 20)... [Pg.427]

Na2C03, H2O, dioxane, warm, 97% yield. Phenols can be protected under similar conditions. Amines are converted by these conditions to carbamates that are stable to alkaline hydrolysis with sodium carbonate. Carbamates are cleaved by acidic hydrolysis (HBr, MeOH, CH2CI2, 8 h), conditions that do not cleave alkyl or aryl vinyl carbonates. [Pg.183]

A number of imine derivatives have been prepared as amine protective groups, but most of these have not seen extensive use. The most widely used are the ben-zylidene and diphenylmethylene derivatives. The less used derivatives are listed, for completeness, with their references at the end of this section. For the most part, they are prepared from the aldehyde and the amine by water removal cleavage is effected by acid hydrolysis. [Pg.586]

Alkylthio, arylthio, and thioxo. The thioxo group in pyrimidine-2,4-dithione can be displaced by amines, ammonia, and amine acetates, and this amination is specific for the 4-position in pyrimidines and quinazolines. 2-Substitution fails even when a 5-substituent (cf. 134) sterically prevents reaction of a secondary amine at the 4-position. Acid hydrolysis of pyrimidine-2,4-dithione is selective at the 4-position. 2-Amination of 2-thiobarbituric acid and its /S-methyl derivative has been reported. Under more basic conditions, anionization of thioxo compounds decreases the reactivity 2-thiouracil is less reactive toward hot alkali than is the iS-methyl analog. Hydrazine has been reported to replace (95°, 6 hr, 65% 3deld) the 2-thioxo group in 5-hexyl-6-methyl-2-thiouracil. Ortho and para mercapto- or thio- azines are actually in the thione form. ... [Pg.213]

The oxime of bromoacetylfurazan 123 was converted into the amine 125 by treatment with hexamethylenetetramine and subsequent acidic hydrolysis. Oxa-diazine derivative 126 was made from the amine and formaldehyde in 57% yield (Scheme 73) (97ROC1760, 97ZOR1844). [Pg.101]

Reaction of 9,10-difluoro-7-oxo-2,3-dihydro-7//-pyrido[l, 2,3- e]-1,4-ben-zothiazine-6-carboxylic acid and its ethyl ester with B(OH)3 in AC2O in the presence of ZnCl2 afforded 6-[(diacetoxyboryl)oxycarbonyl] derivative 323 (R = OAc)], which was reacted with primary and cyclic amines to give 10-amino-9-fluoro-7-carboxylic acid derivatives 324 (97MI41, 98MI30). 6-[(Difluoroboryl)oxycarbonyl derivative 323 (R = F) was obtained from ethyl 9,10-difluoro-7-oxo-2,3-dihydro-7//-pyrido[l,2,3- fe]-l,4-benzothiazine-6-carboxylate with BF3-THF complex. Reaction of 323 (R = F) and 1-methylpiperazine in DMF at 50-60 °C and subsequent acidic hydrolysis afforded 7 (97MI1). [Pg.294]

Conversion of Amides into Carboxylic Acids Hydrolysis Amides undergo hydrolysis to yield carboxylic acids plus ammonia or an amine on heating in either aqueous acid or aqueous base. The conditions required for amide hydrolysis are more severe than those required for the hydrolysis of add chlorides or esters but the mechanisms are similar. Acidic hydrolysis reaction occurs by nucleophilic addition of water to the protonated amide, followed by transfer of a proton from oxygen to nitrogen to make the nitrogen a better leaving group and subsequent elimination. The steps are reversible, with the equilibrium shifted toward product by protonation of NH3 in the final step. [Pg.814]

Chiral imines derived from 1-phenylethanone and (I. Sj-exo-l, 7,7-trimethyIbicyclo-[2.2.1]heptan-2-amine [(S)-isobornylamine], (.S>1-phenylethanamine or (R)-l-(1-naphthyl) ethanamine are transformed into the corresponding (vinylamino)dichloroboranes (e.g., 3) by treatment with trichloroborane and triethylamine in dichloromethane. Reaction of the chiral boron azaenolates with aromatic aldehydes at 25 "C, and subsequent acidic hydrolysis, furnishes aldol adducts with enantiomeric excesses in the range of 2.5 to 47.7%. Significantly lower asymmetric inductions are obtained from additions of the corresponding lithium and magnesium azaenolates. Best results arc achieved using (.S )-isobornylamine as the chiral auxiliary 3. [Pg.599]

Another example of reagent-induced asymmetric synthesis is the enantioselective preparation of phosphoramides 6 by addition of dialkylzine reagents to A-diphenylphosphinoylimincs 4 in the presence of the enantiomerically pure 1,2-amino alcohols 5a or 5 b (diethylzinc does not add to A-silyl- or A-phenylimines)12. Phosphoramides 6 (crystalline solids) are obtained in moderate to good yield and good enantioselectivity. The latter can be enhanced by recrystallization. Acidic hydrolysis with dilute 3 M hydrochloric acid/tetrahydrofuran provides the corresponding amines 7 without any racemization. [Pg.701]

The procedure is modified for the reaction of preformed cyanohydrins with chiral amines39. I11 a further variation, Schiff bases of aliphatic aldehydes with optically active 1-arylalkyl-amines are transformed with liquid hydrogen cyanide to the corresponding a-aminonitrilcs, which, after acid hydrolysis, give the /V-aryUilkylamino acids. Hydrogenation then yields the a-amino acids40 41. [Pg.786]

When a carbonyl group is bonded to a substituent group that can potentially depart as a Lewis base, addition of a nucleophile to the carbonyl carbon leads to elimination and the regeneration of a carbon-oxygen double bond. Esters undergo hydrolysis with alkali hydroxides to form alkali metal salts of carboxylic acids and alcohols. Amides undergo hydrolysis with mineral acids to form carboxylic acids and amine salts. Carbamates undergo alkaline hydrolysis to form amines, carbon dioxide, and alcohols. [Pg.534]

For betaxanthins, partial synthesis is quite common and presents a viable tool for identification by co-injection experiments. - Starting from a red beet extract or semi-purified betanin-isobetanin blend, alkaline hydrolysis by addition of 32% ammonia is initiated. Spectrophotometric monitoring at 424 nm allows the release of betalamic acid to be followed. Betaxanthins are obtained through the addition of the respective amino acid or amine in at least 20-fold molar excess followed by careful evaporation. Since the starting material most often consists of a racemic betacyanin mixture, the resulting betaxanthin will also consist of two stereoisomers that may not easily be separated by HPLC. ... [Pg.512]

Hydrolysis of polyamide-based formulations with 6 N HC1 followed by TLC allows differentiation between a-aminocaproic acid (ACA) and hexamethylenedi-amine (HMD) (hydrolysis products of PA6 and PA6.6, respectively), even at low levels. The monomer composition (PA6/PA6.6 ratio) can be derived after chromatographic determination of the adipic acid (AA) content. Extraction of the hydrolysate with ether and derivatisa-tion allow the quantitative determination of fatty acids (from lubricants) by means of GC (Figure 3.27). Further HC1/HF treatment of the hydrolysis residue, which is composed of mineral fillers, CB and nonhydrolysable polymers (e.g. impact modifiers) permits determination of total IM and CB contents CB is measured quantitatively by means of TGA [157]. Acid hydrolysis of flame retarded polyamides allows to determine the adipic acid content (indicative of PA6.6) by means of HPLC, HCN content (indicative of melamine cyanurate) and fatty acid (indicative of a stearate) by means of GC [640]. Determination of ethylene oxide-based antistatic agents... [Pg.154]


See other pages where Acid hydrolysis amine is mentioned: [Pg.125]    [Pg.241]    [Pg.445]    [Pg.394]    [Pg.266]    [Pg.419]    [Pg.84]    [Pg.91]    [Pg.132]    [Pg.133]    [Pg.349]    [Pg.550]    [Pg.204]    [Pg.367]    [Pg.372]    [Pg.389]    [Pg.226]    [Pg.349]    [Pg.145]    [Pg.115]    [Pg.20]    [Pg.176]    [Pg.273]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Aminals hydrolysis

Amines hydrolysis

© 2024 chempedia.info