Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid—base reactions formation

The first step of this new mechanism is exactly the same as that seen earlier for the reaction of tert butyl alcohol with hydrogen chloride—formation of an alkyloxonmm ion by proton transfer from the hydrogen halide to the alcohol Like the earlier exam pie this IS a rapid reversible Brpnsted acid-base reaction... [Pg.164]

The electric field-jump method is applicable to reactions of ions and dipoles. Application of a powerful electric field to a solution will favor the production of ions from a neutral species, and it will orient dipoles with the direction of the applied field. The method has been used to study metal ion complex formation, the binding of ions to macromolecules, and acid-base reactions. [Pg.144]

When a complex ion is formed from a simple cation, the electron pairs required for bond formation come solely from the ligands. Reactions such as these, in which one species donates an electron pair to another, are referred to as Lewis acid-base reactions. In particular—... [Pg.410]

Fig. 15-4 Analogy between dissolved ligands and adsorbents (surface-bound ligands) (a) surface acid-base reactions (b) surface complexation of free metals (c) formation of "mixed-ligand" surface complexes. Fig. 15-4 Analogy between dissolved ligands and adsorbents (surface-bound ligands) (a) surface acid-base reactions (b) surface complexation of free metals (c) formation of "mixed-ligand" surface complexes.
Another way of analyzing these combinations is by type of substance. Parts a and c involve mixing of two aqueous solution, parts b and d involve adding a metal to an aqueous system, and part e is the interaction of a metal with O2 gas. When solutions mix, we look first for acid-base reactions (part c), then for formation of a precipitate (part b). When a metal contacts an aqueous system, the most likely reaction, if any, is oxidation of the metal. Any time molecular oxygen is present, we can expect oxidation to be one possibility. [Pg.259]

A final point needs to be made. Theory has indicated that AB cements should be amorphous. However, a degree of crystallization does sometimes occur, its extent varying from cement to cement, and this often misled early workers in the field who used X-ray diffraction as a principal method of study. Although this technique readily identifies crystalline phases, it cannot by its nature detect amorphous material, which may form the bulk of the matrix. Thus, in early work too much emphasis was given to crystalline structures and too little to amorphous ones. As we shall see, the formation of crystalUtes, far from being evidence of cement formation, is often the reverse, complete crystallinity being associated with a non-cementitious product of an acid-base reaction. [Pg.10]

This concept covers most situations in the theory of AB cements. Cements based on aqueous solutions of phosphoric acid and poly(acrylic acid), and non-aqueous cements based on eugenol, alike fall within this definition. However, the theory does not, unfortunately, recognize salt formation as a criterion of an acid-base reaction, and the matrices of AB cements are conveniently described as salts. It is also uncertain whether it covers the metal oxide/metal halide or sulphate cements. Bare cations are not recognized as acids in the Bronsted-Lowry theory, but hydrated... [Pg.15]

A base has the ability to donate a pair of electrons and an acid the ability to accept a pair of electrons to form a covalent bond. The product of a Lewis acid-base reaction may be called an adduct, a coordination compound or a coordination complex (Vander Werf, 1961). Neither salt nor conjugate acid-base formation is a requirement. [Pg.17]

The Usanovich theory is the most general of all acid-base theories. According to Usanovich (1939) any process leading to the formation of a salt is an acid-base reaction. The so-called positive-negative definition of Usanovich runs as follows. [Pg.18]

The setting reaction for the great majority of acid-base cements takes place in water. (The exceptions based on o-phenols are described in Chapter 9.) This reaction does not usually proceed with formation of a precipitate but rather yields a substance which entrains all of the water used to prepare the original cement paste. Water thus acts as both solvent and component in the formation of these cements. It is also one of the reaction products, being formed in the acid-base reaction as the cements set. [Pg.30]

They considered that cement formation was the result of an acid-base reaction leading to the formation of hydrates by a through-solution mechanism, by nucleation and precipitation from pore fluids. Two phases were found in the matrix, one amorphous and the other crystalline. The crystalline phase was newberyite. Finch Sharp concluded that the amorphous phase was a hydrated form of aluminium orthophosphate, AIPO4, which almost certainly contained magnesiiun. They ruled out a pure AlP04.nH20, for they considered that the reaction could not be represented by the equation... [Pg.233]

Cement formation is the result of an acid-base reaction between zinc oxide and eugenol, leading to the formation of a zinc eugenolate chelate. Water plays a vital role in the reaction. [Pg.321]

The senior author first became interested in acid-base cements in 1964 when he undertook to examine the deficiencies of the dental silicate cement with a view to improving performance. At that time there was much concern by both dental surgeon and patient at the failure of this aesthetic material which was used to restore front teeth. Indeed, at the time, one correspondent commenting on this problem to a newspaper remarked that although mankind had solved the problem of nuclear energy the same could not be said of the restoration of front teeth. At the time it was supposed that the dental silicate cement was, as its name implied, a silicate cement which set by the formation of silica gel. Structural studies at the Laboratory of the Government Chemist (LGC) soon proved that this view was incorrect and that the cement set by formation of an amorphous aluminium phosphate salt. Thus we became aware of and intrigued by a class of materials that set by an acid-base reaction. It appeared that there was endless scope for the formulation of novel materials based on this concept. And so it proved. [Pg.417]

The literature3 contains some limited work on decaborane-based polymer systems. Typically, most utilize the Lewis acid/base reaction between decaborane (Lewis acid, B10H12) and amines and phosphines (Lewis bases, L) resulting in the formation of complexes (see scheme 2) having the general formulas B10H12L2. For example, the... [Pg.96]

The inorganic elements in aqueous solution reactions, both acid-base complex formation, precipitation and oxidation/reduction, frequently come rapidly to equilibrium when no more reactions are possible. The implication is that in the environment and in organisms many of their properties cannot change unless circumstances change, for example the introduction of new components. [Pg.75]

Acid-base reactions always favor the formation of the weaker acid and the weaker base. [Pg.100]

Solutions of the analyte and the matrix (from nanolitre to microlitre amounts) are deposited or spotted on a flat metal target plate. Owing to evaporation of the solvent, matrix and analyte co-crystallize. Short laser pulses (1 20 ns) bombard the solid and cause the sample and matrix to be volatilized. The formation of ions occurs by acid base reaction between the ionized matrix molecules and the analyte molecules (Figure 2.5). [Pg.51]

In general, complexation of an aquometal ion occurs when the ligand is a stronger base than H20, and analogously may be considered an acid-base reaction. The stability (or formation) constant, KMl, is used to describe the interaction of the metal ion (Mz+, shown here with the hydration sheath surrounding the metal ion omitted for reasons of clarity) with a complexant (L" ) ... [Pg.260]

The general Lewis-acid-base reaction (3.95) exemplifies the two-electron stabilizing donor-acceptor interaction of Fig. 1.3 (namely the nN->-nB interaction for (3.94)), which may be distinguished from the complementary bi-directional donor-acceptor interactions of covalent-bond formation (Section 3.2.1). However, this leaves open the question of whether (or how) the equilibrium bond reflects the formal difference between heterolytic (3.95) and homolytic (3.96) bond formation. [Pg.177]

The relative stabilities of the dioxides, sesquioxides and monoxides for first period transition metals are given in Figure 7.11(c). The stability of the higher oxidation state oxides decreases across the period. As we will discuss later, higher oxidation states can be stabilized in a ternary oxide if the second metal is a basic oxide like an alkaline earth metal. The lines in Figure 7.11(c) can in such cases be used to estimate enthalpies of formation for unstable oxidation states in order to determine the enthalpy stabilization in the acid-base reactions see below. Finally, it should be noted that the relative stability of the oxides in the higher oxidation states increases from the 3d via 4d to the 5d elements, as illustrated for the Cr, Mo and W oxides in Figure 7.11(d). [Pg.209]

Anhydrous copper(II) sulfate, 7 773 Anhydrous ethanol, production by azeotropic extraction, 8 809, 817 Anhydrous gaseous hydrogen sulfide, 23 633 Anhydrous hydrazine, 13 562, 585 acid-base reactions of, 13 567-568 explosive limits of, 13 566t formation of, 13 579 vapor pressures of, 13 564 Anhydrous hydrogen chloride, 13 809-813 physical and thermodynamic properties of, 13 809-813 purification of, 13 824-825 reactions of, 13 818-821 uses for, 13 833-834... [Pg.56]

For the reaction acid(g) + base(g) —> adduct (sum of gas-phase acid-base reaction and the heat of sublimation ). b No reaction observed. c No simple adduct formation. [Pg.133]

Thus, Lewis s definition is a much broader definition that includes coordination compound formation as acid-base reactions, besides Arrhenius and Lowry-Bronsted acids and bases. Examples ... [Pg.97]

In this chapter, you will continue your study of acid-base reactions. You will find out how ions in aqueous solution can act as acids or bases. Then, by applying equilibrium concepts to ions in solution, you will be able to predict the solubility of ionic compounds in water and the formation of a precipitate. [Pg.418]

Proton transfer is one of the prominent representatives of an ion-molecule reaction in the gas phase. It is employed for the determination of GBs and PAs (Chap. 2.11.2) by either method the kinetic method makes use of the dissociation of proton-bound heterodimers, and the thermokinetic method determines the equilibrium constant of the acid-base reaction of gaseous ions. In general, proton transfer plays a crucial role in the formation of protonated molecules, e.g., in positive-ion chemical ionization mass spectrometry (Chap. 7). [Pg.60]

Treatment of 2-, 3- or 4-MePhCu with DPPM affords the trimeric aggregate Cu3[CH(PPh2)2]3 in quantitative yield [56]. This is in fact a simple acid-base reaction (Cu/H exchange). It should be noted that the latter compound is also accessible by means of a transmetalation reaction between Li[CH(PPh2)2] and CuCl. In contrast, treatment of [Cu4(QH4CH2NMe2-2)4] with DPPE results in selective C-P bond cleavage and formation of Cu2(PPh2)2(DPPE)2 (see Scheme 1.11) [57]. [Pg.11]


See other pages where Acid—base reactions formation is mentioned: [Pg.436]    [Pg.436]    [Pg.311]    [Pg.63]    [Pg.179]    [Pg.326]    [Pg.442]    [Pg.558]    [Pg.346]    [Pg.1501]    [Pg.1525]    [Pg.102]    [Pg.318]    [Pg.286]    [Pg.85]    [Pg.49]    [Pg.79]    [Pg.214]    [Pg.146]    [Pg.27]    [Pg.66]    [Pg.385]    [Pg.101]    [Pg.453]    [Pg.89]    [Pg.420]   
See also in sourсe #XX -- [ Pg.119 , Pg.120 ]




SEARCH



Acid base reactions

Bases formation

Bases, acid-base reactions

© 2024 chempedia.info