Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid-base cements crystallinity

Acid-base cements are formed at room temperature but exhibit properties like those of ceramics. They are formed by reaction of an acid with a base. Normally this reaction produces a noncoherent precipitate. If, however, the reaction rate is controlled properly between certain acids and bases, coherent bonds can develop between precipitating particles that will grow into crystalline structures and form a ceramic. The acidic and alkaline components neutralize each other rapidly, and the resulting paste sets rapidly into products with neutral pH. [Pg.3]

A final point needs to be made. Theory has indicated that AB cements should be amorphous. However, a degree of crystallization does sometimes occur, its extent varying from cement to cement, and this often misled early workers in the field who used X-ray diffraction as a principal method of study. Although this technique readily identifies crystalline phases, it cannot by its nature detect amorphous material, which may form the bulk of the matrix. Thus, in early work too much emphasis was given to crystalline structures and too little to amorphous ones. As we shall see, the formation of crystalUtes, far from being evidence of cement formation, is often the reverse, complete crystallinity being associated with a non-cementitious product of an acid-base reaction. [Pg.10]

Cement formation between MgO and various acid phosphates involves both acid-base and hydration reactions. The reaction products can be either crystalline or amorphous some crystalline species are shown in Table 6.5. The presence of ammonium or aluminium ions exerts a decisive influence on the course of the cement-forming reaction. [Pg.224]

They considered that cement formation was the result of an acid-base reaction leading to the formation of hydrates by a through-solution mechanism, by nucleation and precipitation from pore fluids. Two phases were found in the matrix, one amorphous and the other crystalline. The crystalline phase was newberyite. Finch Sharp concluded that the amorphous phase was a hydrated form of aluminium orthophosphate, AIPO4, which almost certainly contained magnesiiun. They ruled out a pure AlP04.nH20, for they considered that the reaction could not be represented by the equation... [Pg.233]

Oxysalt bonded cements are formed by acid-base reactions between a metal oxide in powdered solid form and aqueous solutions of metal chloride or sulphate. These reactions typically give rise to non-homo-geneous materials containing a number of phases, some of which are crystalline and have been well-characterized by the technique of X-ray diffraction. The structures of the components of these cements and the phase relationships which exist between them are complex. However, as will be described in the succeeding parts of this chapter, in many cases there is enough knowledge about these cements to enable their properties and limitations to be generally understood. [Pg.283]

Early workers, and some later ones, ignored the fact that aluminium is always found in the orthophosphoric acid liquid of the practical cement its presence profoundly affects the course of the cement-forming reaction. It affects crystallinity and phase composition, and renders deductions based on phase diagrams inappropriate. Nevertheless we first describe the simple reaction between zinc oxide and pure orthophosphoric acid solution, which was the system studied by the earliest workers. [Pg.207]

Quantitative data on the rate of consumption of pfa are few and somewhat variable. Those based on differences between the CH contents of pure Portland and pfa cements are suspect, because the calculation involves the effects of pfa substitution both on the rate of consumption of the clinker phases and on the compositions of the products, which are not fully understood. Unreacted pfa has been directly determined by dissolution of the other phases with HCl (C43) or with salicylic acid in methanol followed by HCl (T44), chemical separation of the residual pfa followed by QXDA determination of its content of crystalline phases (D12) and a trimethylsily-lation method (U19). A method based on EDTA extraction was found unsatisfactory (L46). [Pg.294]


See other pages where Acid-base cements crystallinity is mentioned: [Pg.323]    [Pg.471]    [Pg.222]    [Pg.833]    [Pg.123]   
See also in sourсe #XX -- [ Pg.8 , Pg.9 ]




SEARCH



Acid-base cements

Cement-based

© 2024 chempedia.info