Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Achievement of control

There are also approaches [, and M] to control that have had marked success and which do not rely on quantum mechanical coherence. These approaches typically rely explicitly on a knowledge of the internal molecular dynamics, both in the design of the experiment and in the achievement of control. So far, these approaches have exploited only implicitly the very simplest types of bifiircation phenomena, such as the transition from local to nonnal stretch modes. If fiittlier success is achieved along these lines m larger molecules, it seems likely that deliberate knowledge and exploitation of more complicated bifiircation phenomena will be a matter of necessity. [Pg.78]

On the basis of the presented oscillator-wave model it is also possible to create heuristic models of the interaction of electromagnetic waves with plasma particles in the Earth s ionosphere and magnetosphere, heuristic models of the generation of powerful low-frequency waves in the space around the Earth when a cosmic electromagnetic background is present etc. High-efficient sub-millimeter emitter, built on this basis, could be suitable for radio-physical heating of plasma, e.g. in the experiments aimed the achievement of controlable thermonuclear reaction [ ] ... [Pg.119]

The direct transport of absorbed drugs into systemic circulation, effectively by-passing the first-pass effect of the liver and gastrointestinal tract Lower enzymatic activity compared to the gastrointestinal tract or liver Amenability to self-medication, which increases patient compliance Possibility of pulsatile delivery of some drugs to simulate the biorhythmic release of these drugs Lower risk of overdosage Achievement of controlled release... [Pg.113]

Recent years have seen a flurry of activity in both the theoretical and experimental aspects of control over molecular processes [1] (see also S. A. Rice, Perspectives on the Control of Quantum Many-Body Dynamics Application to Chemical Reactions, this volume). Most of the emphasis has been on the use of optical fields as a means for control, although other approaches can be envisioned in special circumstances [2]. The key underlying principle of the overall subject is the achievement of control through the manipulation of quantum wave interferences [1, 3], although full control will surely not be lost in the incoherent regime. [Pg.315]

The view of this author is that knowledge of the internal molecular motions, perhaps as outlined in this chapter, is likely to be important in achieving successfiil control, in approaches that make use of coherent light sources and quantum mechanical coherence. However, at this point, opinions on these issues may not be much more than speculation. [Pg.78]

A degree of control over the kinetic selectivity of molecular sieve adsorbents can be achieved by controUed adjustment of the pore si2e. In a carbon sieve this may be accompHshed by adjusting the bum-out conditions or by controUed deposition of an easily crackable hydrocarbon. In a 2eoHte, ion... [Pg.251]

Bubble size control is achieved by controlling particle size distribution or by increasing gas velocity. The data as to whether internal baffles also lower bubble size are contradictory. (Internals are commonly used in fluidized beds for heat exchange, control of soflds hackmixing, and other purposes.)... [Pg.75]

Oxides of nitrogen, NO, can also form. These are generally at low levels and too low an oxidation state to consider water scmbbing. A basic reagent picks up the NO2, but not the lower oxidation states the principal oxide is usually NO, not NO2. Generally, control of NO is achieved by control of the combustion process to minimize NO, ie, avoidance of high temperatures in combination with high oxidant concentrations, and if abatement is required, various approaches specific to NO have been employed. Examples are NH injection and catalytic abatement (43). [Pg.58]

Assessments of control, operabiHty and part load performance of MHD—steam plants are discussed elsewhere (rl44 and rl45). Analyses have shown that relatively high plant efficiency can be maintained at part load, by reduction of fuel input, mass flow, and MHD combustor pressure. In order to achieve efficient part load operation the steam temperature to the turbine must be maintained. This is accompHshed by the use of flue gas recirculation in the heat recovery furnace at load conditions less than about 75% of fiiU load. [Pg.435]

Size reduction (qv) or comminution is the first and very important step in the processing of most minerals (2,6,10,20—24). It also involves large expenditures for heavy equipment, energy, operation, and maintenance. Size reduction is necessary because the value minerals are intimately associated with gangue and need to be Hberated, and/or because most minerals processing/separation methods require the ore mass to be of certain size and/or shape. Size reduction is also required in the case of quarry products to produce material of controlled particle size (see Size measurement of particles). In some instances, hberation of valuables or impurities from the ore matrix is achieved without any apparent size reduction. Scmbbers and attritors used in the industrial minerals plants, eg, phosphate, mtile, glass sands, or clay, ate examples. [Pg.396]

Since the development of the Spansule brand (Smith Kline Beech am) of coated beads and granules in the late 1960s, various dmg product technologies have been developed and patented to achieve extended durations of therapeutic effects. Each of these does so by various mechanisms of control of dmg release from adrninistered dosage forms. Each method has its advantages and disadvantages, a discussion of which is available in the pharmaceutical hterature (see Drug delivery systems) (21). [Pg.231]

For continuing polymerization to occur, the ion pair must display reasonable stabiUty. Strongly nucleophilic anions, such as C/ , are not suitable, because the ion pair is unstable with respect to THE and the alkyl haUde. A counterion of relatively low nucleophilicity is required to achieve a controlled and continuing polymerization. Examples of anions of suitably low nucleophilicity are complex ions such as SbE , AsF , PF , SbCf, BE 4, or other anions that can reversibly coUapse to a covalent ester species CF SO, FSO, and CIO . In order to achieve reproducible and predictable results in the cationic polymerization of THE, it is necessary to use pure, dry reagents and dry conditions. High vacuum techniques are required for theoretical studies. Careful work in an inert atmosphere, such as dry nitrogen, is satisfactory for many purposes, including commercial synthesis. [Pg.361]

The dynamics of the secondary control loop should be approximately two to four times as fast as the dynamics of the primary control loop in order to achieve stable control. The secondary controller is actually part of the primary controller s process system. Hence, changes in the secondary controller tuning constants change the process system of the primary controller. Therefore, cascade control loops should always be tuned by first tuning the secondary controller and then the primary controller. If the secondary controller tuning is changed for any reason, the primary controller may need to be retuned also. [Pg.70]

Commercially, the irradiation of the 5,7-diene provitamin to make vitamin D must be performed under conditions that optimize the production of the previtamin while avoiding the development of the unwated isomers. The optimization is achieved by controlling the extent of irradiation, as well as the wavelength of the light source. The best frequency for the irradiation to form previtamin is 295 nm (64—66). The unwanted conversion of previtamin to tachysterol is favored when 254 nm light is used. Sensitized irradiation, eg, with fluorenone, has been used to favor the reverse, triplet-state conversion of tachysterol to previtamin D (73,74). [Pg.131]


See other pages where Achievement of control is mentioned: [Pg.276]    [Pg.47]    [Pg.276]    [Pg.177]    [Pg.2570]    [Pg.410]    [Pg.179]    [Pg.320]    [Pg.13]    [Pg.276]    [Pg.47]    [Pg.276]    [Pg.177]    [Pg.2570]    [Pg.410]    [Pg.179]    [Pg.320]    [Pg.13]    [Pg.101]    [Pg.275]    [Pg.266]    [Pg.368]    [Pg.350]    [Pg.46]    [Pg.386]    [Pg.525]    [Pg.533]    [Pg.346]    [Pg.234]    [Pg.518]    [Pg.377]    [Pg.219]    [Pg.415]    [Pg.63]    [Pg.67]    [Pg.262]    [Pg.521]    [Pg.125]    [Pg.400]    [Pg.289]    [Pg.68]    [Pg.213]    [Pg.349]    [Pg.355]   
See also in sourсe #XX -- [ Pg.556 ]




SEARCH



Achievability

Achievable

Achievement

Achievers

Feed-forward control strategy simulation results of set vs achieved

Use of Short-Lived Reactive Species Achieved by High-Resolution Reaction Time Control

© 2024 chempedia.info