Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylcholine neuromuscular junction

The principal arninoglycoside toxicides are neuromuscular paralysis, ototoxicity, and nephrotoxicity. Neuromuscular paralysis is a relatively rare complication resulting from high aminoglycoside concentrations at the neuromuscular junctions following, for example, rapid bolus intravenous injection or peritoneal instillation, rather than the normal intravenous infusion. The mechanism apparentiy involves an inhibition of both the presynaptic release of acetylcholine and the acetylcholine postsynaptic receptors (51). [Pg.482]

Enzyme Inhibition. Some materials produce toxic effects by inhibition of biologically vital enzyme systems, leading to an impairment of normal biochemical pathways. The toxic organophosphates, for example, inhibit the cholinesterase group of enzymes. An important factor in thek acute toxicity is the inhibition of acetylocholinesterase at neuromuscular junctions, resulting in an accumulation of the neurotransmitter material acetylcholine and causing muscle paralysis (29) (see Neuroregulators). [Pg.228]

Acetylcholine is a neurotransmitter at the neuromuscular junction in autonomic ganglia and at postgangHonic parasympathetic nerve endings (see Neuroregulators). In the CNS, the motor-neuron collaterals to the Renshaw cells are cholinergic (43). In the rat brain, acetylcholine occurs in high concentrations in the interpeduncular and caudate nuclei (44). The LD q (subcutaneous) of the chloride in rats is 250 mg/kg. [Pg.102]

Acetylcholine serves as a neurotransmitter. Removal of acetylcholine within the time limits of the synaptic transmission is accomplished by acetylcholinesterase (AChE). The time required for hydrolysis of acetylcholine at the neuromuscular junction is less than a millisecond (turnover time is 150 ps) such that one molecule of AChE can hydrolyze 6 105 acetylcholine molecules per minute. The Km of AChE for acetylcholine is approximately 50-100 pM. AChE is one of the most efficient enzymes known. It works at a rate close to catalytic perfection where substrate diffusion becomes rate limiting. AChE is expressed in cholinergic neurons and muscle cells where it is found attached to the outer surface of the cell membrane. [Pg.12]

Voluntary muscle contraction is initiated in the brain-eliciting action potentials which are transmitted via motor nerves to the neuromuscular junction where acetylcholine is released causing a depolarization of the muscle cell membrane. An action potential is formed which is spread over the surface membrane and into the transverse (T) tubular system. The action potential in the T-tubular system triggers Ca " release from the sarcoplasmic reticulum (SR) into the myoplasm where Ca " binds to troponin C and activates actin. This results in crossbridge formation between actin and myosin and muscle contraction. [Pg.240]

In the venom of C. geographus and other fish-hunting species, the conotoxins isolated so far can be divided into three major classes (1-4) o -conotoxms which block neuronal calcium channels at the presynaptic terminus of the neuromuscular junction, a-conotoxins which inhibit the acetylcholine receptor at the postsynaptic terminus, and x-conotoxins which block Na channels on the muscle membrane. [Pg.267]

Another possible target for toxins are the receptors for neurotransmitters since such receptors are vital, especially for locomotion. In vertebrates the most strategic receptor is that for acetylcholine, the nicotinic receptor. In view of the breadth of action of the various conotoxins it is perhaps not surprising that alpha-conotoxin binds selectively to the nicotinic receptor. It is entirely possible that similar blockers exist for the receptors which are vital to locomotion in lower species. As mentioned previously, lophotoxin effects vertebrate neuromuscular junctions. It appears to act on the end plate region of skeletal muscle (79,59), to block the nicotinic receptor at a site different from the binding sites for other blockers (81). [Pg.324]

To achieve their different effects NTs are not only released from different neurons to act on different receptors but their biochemistry is different. While the mechanism of their release may be similar (Chapter 4) their turnover varies. Most NTs are synthesised from precursors in the axon terminals, stored in vesicles and released by arriving action potentials. Some are subsequently broken down extracellularly, e.g. acetylcholine by cholinesterase, but many, like the amino acids, are taken back into the nerve where they are incorporated into biochemical pathways that may modify their structure initially but ultimately ensure a maintained NT level. Such processes are ideally suited to the fast transmission effected by the amino acids and acetylcholine in some cases (nicotinic), and complements the anatomical features of their neurons and the recepter mechanisms they activate. Further, to ensure the maintenance of function in vital pathways, glutamate and GABA are stored in very high concentrations (10 pmol/mg) just as ACh is at the neuromuscular junction. [Pg.25]

Focal spasticity Botulinum toxin Prevents release of acetylcholine in the neuromuscular junction Individualized... [Pg.440]

According to Fig. 6.17 the nerve cell is linked to other excitable, both nerve and muscle, cells by structures called, in the case of other nerve cells, as partners, synapses, and in the case of striated muscle cells, motor end-plates neuromuscular junctions). The impulse, which is originally electric, is transformed into a chemical stimulus and again into an electrical impulse. The opening and closing of ion-selective channels present in these junctions depend on either electric or chemical actions. The substances that are active in the latter case are called neurotransmitters. A very important member of this family is acetylcholine which is transferred to the cell that receives the signal across the postsynaptic membrane or motor endplate through a... [Pg.473]

Each muscle fiber is innervated by a branch of an alpha motor neuron. The synapse between the somatic motor neuron and the muscle fiber is referred to as the neuromuscular junction. Action potentials in the motor neuron cause release of the neurotransmitter acetylcholine. Binding of acetylcholine to its receptors on the muscle fiber causes an increase in the permeability to Na+ and K+ ions. The ensuing depolarization generates an action potential that travels along the surface of the muscle fiber in either direction that is referred to as a propagated action potential. This action potential elicits the intracellular events that lead to muscle contraction. [Pg.143]

The concept of chemical neurotransmission originated in the 1920s with the classic experiments of Otto Loewi (which were themselves inspired by a dream), who demonstrated that by transferring the ventricular fluid of a stimulated frog heart onto an unstimulated frog heart he could reproduce the effects of a (parasympathetic) nerve stimulus on the unstimulated heart (Loewi Navratil, 1926). Subsequently, it was found that acetylcholine was the neurotransmitter released from these parasympathetic nerve fibers. As well as playing a critical role in synaptic transmission in the autonomic nervous system and at vertebrate neuromuscular junctions (Dale, 1935), acetylcholine plays a central role in the control of wakefulness and REM sleep. Some have even gone as far as to call acetylcholine a neurotransmitter correlate of consciousness (Perry et al., 1999). [Pg.26]

Xu et al. [5] described the effect of (z>)-penicillamine on the binding of several antiacetylcholine receptor monoclonal antibodies to the Torpedo acetylcholine receptor. Penicillamine is covalently incorporated into the acetylcholine receptor through SS exchange at the cysteine residues of the a-subunit, altering the antigenic structure of the receptor. This effect on the structure of the native receptor at the neuromuscular junction may be responsible for the establishment of the autoimmune response to the acetylcholine receptor in (i))-penicillamine-induced myasthenia gravis. Cysteine and penicillamine interact to form penicillamine-cysteine mixed disulfide complexes [6] ... [Pg.127]

Chemical transmission between nerve cells involves multiple steps 167 Neurotransmitter release is a highly specialized form of the secretory process that occurs in virtually all eukaryotic cells 168 A variety of methods have been developed to study exocytosis 169 The neuromuscular junction is a well defined structure that mediates the presynaptic release and postsynaptic effects of acetylcholine 170 Quantal analysis defines the mechanism of release as exocytosis 172 Ca2+ is necessary for transmission at the neuromuscular junction and other synapses and plays a special role in exocytosis 174 Presynaptic events during synaptic transmission are rapid, dynamic and interconnected 175... [Pg.167]

The neuromuscular junction is a well-defined structure that mediates the presynaptic release and postsynaptic effects of acetylcholine. The first detailed studies of... [Pg.170]

Van der Kloot, W. and Molgo, J. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74 898-991,1994. [Pg.208]

FIGURE18-4 Neuropeptides and conventional neurotransmitters are released from different parts of the nerve terminal. A neuromuscular junction containing both large dense-core vesicles (containing the neuropeptide SCP) and also small synaptic vesicles (containing acetylcholine) was stimulated for 30 min at 12 Hz (3.5 s every 7 s). Depletion of the small clear vesicles at the muscle face and of the peptide granules at the nonmuscle face of the nerve terminal was observed. After stimulation, there was an increase in the number of large dense-core vesicles within one vesicle diameter of the membrane. (Adapted from reference [37].)... [Pg.321]

Tyrosine phosphorylation has a role in the formation of the neuromuscular synapse. For instance, the acetylcholine receptor (AChR) is concentrated at the postsynaptic membrane of the neuromuscular junction at a density of 10,000 receptors/pm2, which is about three orders of magnitude higher than that of the extrasynaptic region... [Pg.428]

Measuring muscle-evoked responses to repetitive motor nerve electrical stimulation permits detection of presyn-aptic neuromuscular junction dysfunction. In botulism and the Lambert-Eaton syndrome, repetitive stimulation elicits a smaller than normal skeletal muscle response at the beginning of the stimulus train, due to impaired initial release of acetylcholine-containing vesicles from presyn-aptic terminals of motor neurons followed by a normal or accentuated incremental muscle response during repeated stimulation. This incremental response to repetitive stimulation in presynaptic neuromuscular disorders can be distinguished from the decremental response that characterizes autoimmune myasthenia gravis, which affects the postsynaptic component of neuromuscular junctions. [Pg.620]

Lambert-Eaton syndrome is an antibody-mediated neuromuscular junction disorder. This disorder, which is most frequently encountered in patients with small-cell lung carcinoma, is characterized clinically by weakness and hyporeflexia. The impaired release of acetylcholine vesicles from presynaptic terminals at neuromuscular junctions that causes the weakness is a consequence of autoantibodies against small cell carcinoma epitopes that cross-react with and downregulate the expression of motor nerve terminal Ca2+ channels [39]. (See in Ch. 43.)... [Pg.623]

Bacterial botulinum toxin blocks presynaptic acetylcholine release 725 Snake, scorpion, spider, fish and snail peptide venoms act on multiple molecular targets at the neuromuscular junction 727 Electrolyte imbalances alter the voltage sensitivity of muscle ion channels 728... [Pg.713]


See other pages where Acetylcholine neuromuscular junction is mentioned: [Pg.404]    [Pg.247]    [Pg.870]    [Pg.1204]    [Pg.203]    [Pg.304]    [Pg.511]    [Pg.15]    [Pg.107]    [Pg.277]    [Pg.322]    [Pg.5]    [Pg.92]    [Pg.129]    [Pg.27]    [Pg.109]    [Pg.24]    [Pg.219]    [Pg.230]    [Pg.472]    [Pg.26]    [Pg.108]    [Pg.171]    [Pg.172]    [Pg.186]    [Pg.194]    [Pg.313]    [Pg.429]    [Pg.430]    [Pg.482]   
See also in sourсe #XX -- [ Pg.170 , Pg.171 , Pg.172 , Pg.174 ]




SEARCH



Neuromuscular

Neuromuscular junction acetylcholine receptors

© 2024 chempedia.info