Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylation animal

Tissues from both rapid and slow acetylator rabbits have been investigated. The capacity to acetylate sulfamethazine in tissues of a rapid acetylator rabbit is located primarily in liver, gut mucosa, and lung it is also present in thymus, ovary, spleen, uterus, adrenal, leukocytes, kidney, bone marrow, salivary gland, pancreas, pineal, erythrocytes, and brain. Sulfamethazine-acetylating activity is undetectable in eletal muscle, fat, skin, and plasma. In contrast, bver and gut mucosa from a slow acetylator rabbit contain low or undetectable levels of sulfamethazine-acetylating activity as expected, while certain extrahepatic tissues, in particular spleen, kidney, and pineal remain at levels found in the rapid acetylator, and thus do not reflect the acetylator phenotype of the animal These findings are shown in Fig. 6 for four tissues obtained from a series of rabbits with a spectrum of sulfamethazine-acetylating activities from very rapid to very slow acetylators. It should be noted that activity levels in gut mucosa correlate well with that in liver for rapid acetylator animals (C, F, G, and H) but reach a minimal, relatively invariant value for animals at the opposite end of the spectrum. [Pg.280]

Fatty acids derived from animal and vegetable sources generally contain an even number of carbon atoms siace they are biochemically derived by condensation of two carbon units through acetyl or malonyl coenzyme A. However, odd-numbered and branched fatty acid chains are observed ia small concentrations ia natural triglycerides, particularly mminant animal fats through propionyl and methylmalonyl coenzyme respectively. The glycerol backbone is derived by biospeciftc reduction of dihydroxyacetone. [Pg.122]

Coum rinic Acid Compounds. These synthetic phyUoquinone derivatives and congeners have been employed as anticoagulants since the isolation of 3,3 -methylenebis(4-hydroxy-2H-l-benzopyran-2-one) [66-76-2] (bis-4-hydroxycoumarin or dicoumarol) (1) from spoiled sweet clover in 1939. The ingestion of the latter was responsible for widespread and extensive death of bovine animals at that time. The parent compound for the synthesis of many congeners is 4-hydrocoumarin, which is synthesized from methyl salicylate by acetylation and internal cyclization. The basic stmctures of these compounds are shown in Figure 2, and their properties Hsted in Table 6 (see Coumarin). [Pg.177]

Pantothenic acid is found in extracts from nearly all plants, bacteria, and animals, and the name derives from the Greek pantos, meaning everywhere. It is required in the diet of all vertebrates, but some microorganisms produce it in the rumens of animals such as cattle and sheep. This vitamin is widely distributed in foods common to the human diet, and deficiencies are only observed in cases of severe malnutrition. The eminent German-born biochemist Fritz Lipmann was the first to show that a coenzyme was required to facilitate biological acetylation reactions. (The A in... [Pg.594]

Pyruvate carboxylase is the most important of the anaplerotie reactions. It exists in the mitochondria of animal cells but not in plants, and it provides a direct link between glycolysis and the TCA cycle. The enzyme is tetrameric and contains covalently bound biotin and an Mg site on each subunit. (It is examined in greater detail in our discussion of gluconeogenesis in Chapter 23.) Pyruvate carboxylase has an absolute allosteric requirement for acetyl-CoA. Thus, when acetyl-CoA levels exceed the oxaloacetate supply, allosteric activation of pyruvate carboxylase by acetyl-CoA raises oxaloacetate levels, so that the excess acetyl-CoA can enter the TCA cycle. [Pg.663]

As we began this chapter, we saw that photosynthesis traditionally is equated with the process of COg fixation, that is, the net synthesis of carbohydrate from COg. Indeed, the capacity to perform net accumulation of carbohydrate from COg distinguishes the phototrophic (and autotrophic) organisms from het-erotrophs. Although animals possess enzymes capable of linking COg to organic acceptors, they cannot achieve a net accumulation of organic material by these reactions. For example, fatty acid biosynthesis is primed by covalent attachment of COg to acetyl-CoA to form malonyl-CoA (Chapter 25). Nevertheless, this fixed COg is liberated in the very next reaction, so no net COg incorporation occurs. [Pg.731]

Fatty acids with odd numbers of carbon atoms are rare in mammals, but fairly common in plants and marine organisms. Humans and animals whose diets include these food sources metabolize odd-carbon fatty acids via the /3-oxida-tion pathway. The final product of /3-oxidation in this case is the 3-carbon pro-pionyl-CoA instead of acetyl-CoA. Three specialized enzymes then carry out the reactions that convert propionyl-CoA to succinyl-CoA, a TCA cycle intermediate. (Because propionyl-CoA is a degradation product of methionine, valine, and isoleucine, this sequence of reactions is also important in amino acid catabolism, as we shall see in Chapter 26.) The pathway involves an initial carboxylation at the a-carbon of propionyl-CoA to produce D-methylmalonyl-CoA (Figure 24.19). The reaction is catalyzed by a biotin-dependent enzyme, propionyl-CoA carboxylase. The mechanism involves ATP-driven carboxylation of biotin at Nj, followed by nucleophilic attack by the a-carbanion of propi-onyl-CoA in a stereo-specific manner. [Pg.791]

Succinyl-CoA derived from propionyl-CoA can enter the TCA cycle. Oxidation of succinate to oxaloacetate provides a substrate for glucose synthesis. Thus, although the acetate units produced in /3-oxidation cannot be utilized in glu-coneogenesis by animals, the occasional propionate produced from oxidation of odd-carbon fatty acids can be used for sugar synthesis. Alternatively, succinate introduced to the TCA cycle from odd-carbon fatty acid oxidation may be oxidized to COg. However, all of the 4-carbon intermediates in the TCA cycle are regenerated in the cycle and thus should be viewed as catalytic species. Net consumption of succinyl-CoA thus does not occur directly in the TCA cycle. Rather, the succinyl-CoA generated from /3-oxidation of odd-carbon fatty acids must be converted to pyruvate and then to acetyl-CoA (which is completely oxidized in the TCA cycle). To follow this latter route, succinyl-CoA entering the TCA cycle must be first converted to malate in the usual way, and then transported from the mitochondrial matrix to the cytosol, where it is oxida-... [Pg.793]

Rittenberg and Bloch showed in the late 1940s that acetate units are the building blocks of fatty acids. Their work, together with the discovery by Salih Wakil that bicarbonate is required for fatty acid biosynthesis, eventually made clear that this pathway involves synthesis of malonyl-CoA. The carboxylation of acetyl-CoA to form malonyl-CoA is essentially irreversible and is the committed step in the synthesis of fatty acids (Figure 25.2). The reaction is catalyzed by acetyl-CoA carboxylase, which contains a biotin prosthetic group. This carboxylase is the only enzyme of fatty acid synthesis in animals that is not part of the multienzyme complex called fatty acid synthase. [Pg.805]

In animals, acetyl-CoA carboxylase (ACC) is a filamentous polymer (4 to 8 X 10 D) composed of 230-kD protomers. Each of these subunits contains the biotin carboxyl carrier moiety, biotin carboxylase, and transcarboxylase activities, as well as allosteric regulatory sites. Animal ACC is thus a multifunctional protein. The polymeric form is active, but the 230-kD protomers are inactive. The activity of ACC is thus dependent upon the position of the equilibrium between these two forms ... [Pg.805]

The regulatory effects of citrate and palmitoyl-CoA are dependent on the phosphorylation state of acetyl-CoA carboxylase. The animal enzyme is phosphorylated at 8 to 10 sites on each enzyme subunit (Figure 25.4). Some of these sites are reg-... [Pg.807]

The enzymes that catalyze formation of acetyl-ACP and malonyl-ACP and the subsequent reactions of fatty acid synthesis are organized quite differently in different organisms. We first discuss fatty acid biosynthesis in bacteria and plants, where the various reactions are catalyzed by separate, independent proteins. Then we discuss the animal version of fatty acid biosynthesis, which involves a single multienzyme complex called fatty acid synthase. [Pg.808]

The individual steps in the elongation of the fatty acid chain are quite similar in bacteria, fungi, plants, and animals. The ease of purification of the separate enzymes from bacteria and plants made it possible in the beginning to sort out each step in the pathway, and then by extension to see the pattern of biosynthesis in animals. The reactions are summarized in Figure 25.7. The elongation reactions begin with the formation of acetyl-ACP and malonyl-ACP, which... [Pg.808]

N-Acetylneuraminic acid aldolase (or sialic acid aldolase, NeuA EC 4.1.3.3) catalyzes the reversible addition of pyruvate (2) to N-acetyl-D-mannosamine (ManNAc (1)) in the degradation of the parent sialic acid (3) (Figure 10.4). The NeuA lyases found in both bacteria and animals are type I enzymes that form a Schiff base/enamine intermediate with pyruvate and promote a si-face attack to the aldehyde carbonyl group with formation of a (4S) configured stereocenter. The enzyme is commercially available and it has a broad pH optimum around 7.5 and useful stability in solution at ambient temperature [36]. [Pg.278]

Three 3-deoxynonulosonic acids containing amino groups are known. The most abundant of these is 5-amino-3,5-deoxy-D- /yc ro-D-ga/acto-nonulosonic acid (neuraminic acid, 27), which occurs in different extracellular polysaccharides. Some of these, like colominic acid from E. coli K1, are homopolysaccharides. Neuraminic acid is generally A-acetylated and, as in the animal glycoconjugates, has only been found in the a-pyranosyl form (27). It also occurs in some LPS, for example those from some Rhodobacter... [Pg.297]

The nature of the diet sets the basic pattern of metabohsm. There is a need to process the products of digestion of dietary carbohydrate, lipid, and protein. These are mainly glucose, fatty acids and glycerol, and amino acids, respectively. In ruminants (and to a lesser extent in other herbivores), dietary cellulose is fermented by symbiotic microorganisms to short-chain fatty acids (acetic, propionic, butyric), and metabohsm in these animals is adapted to use these fatty acids as major substrates. All the products of digestion are metabohzed to a common product, acetyl-CoA, which is then oxidized by the citric acid cycle (Figure 15-1). [Pg.122]

Paracetamol-induced hepatotoxicity can be prevented in animals with SOD, catalase and allopurinol (Kyle et al., 1987 Jaeschke, 1990 Tirmenstein and Nelson, 1990), and by N-acetyl-L-cysteine or methionine in humans (Meredith et al., 1986 Nelson, 1990). The protective efiect of allopurinol in mice only occurred at high concentrations, suggesting that its effect was related to scavenging of ROMs rather than inhibition of their production by XO (Jaeschke, 1990). [Pg.156]


See other pages where Acetylation animal is mentioned: [Pg.282]    [Pg.282]    [Pg.254]    [Pg.430]    [Pg.495]    [Pg.110]    [Pg.144]    [Pg.152]    [Pg.282]    [Pg.690]    [Pg.220]    [Pg.610]    [Pg.667]    [Pg.743]    [Pg.805]    [Pg.811]    [Pg.826]    [Pg.832]    [Pg.330]    [Pg.11]    [Pg.17]    [Pg.672]    [Pg.333]    [Pg.114]    [Pg.194]    [Pg.196]    [Pg.177]    [Pg.219]    [Pg.195]    [Pg.72]    [Pg.137]    [Pg.479]    [Pg.304]    [Pg.176]    [Pg.179]   
See also in sourсe #XX -- [ Pg.3 , Pg.230 ]




SEARCH



© 2024 chempedia.info