Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetonitrile deprotonation

Phenylacetonitrile (pATDMSO = 21.9) is considerably more acidic than acetonitrile. Deprotonation can be done with sodium amide. Dialkylation has been used in the synthesis of meperidine, an analgesic substance.62... [Pg.31]

ET-IR spectroscopy was employed to investigate the structures of the 1 1 complexes between Li" and the guanidine-substituted azo compounds pyiidine-2-azo-p-phenyltetramethylguanidine and 4,4 -bis(tetramethylguanidine)azoben-zene. Both Li" complexes exist as dimers in acetonitrile solution.The structural chemistry of potassium N,N -di(tolyl)formamidinate complexes has been investigated in detail. These compounds were prepared by deprotonation of the parent Af,N -di(tolyl)formamidines with potassium hydride (Scheme 13). The resulting adducts with either THE or DME display one-dimensional polymeric solid-state structures that exhibit /r-fj fj -coordinated formamidinates. [Pg.192]

The catalyst reported by Grotjahn and Lev (11-13) for alkyne hydration (2) is capable of isomerizing alkenes, but veiy slowly. Because we knew that the rate of alkyne hydration was unchanged in the presence of excess phosphine ligand, we thought that like alkyne hydration, alkene isomerization would require loss of acetonitrile ligand (14) and alkene binding. Subsequent deprotonation at an allylic position would make an q -allyl intermediate which when reprotonated at the other... [Pg.380]

Nitriles can also be converted to anions and alkylated. Acetonitrile (p DMso = 31.3) can be deprotonated, provided a strong nonnucleophilic base such as LDA is used. [Pg.34]

On the other hand, deprotonation of cycloadduct 76 with sodium hydride in acetonitrile at 0°C afforded cyclic sulfilimine 78, the so-called 1,2-azathiabenzene derivative, together with a spiro compound 79 (see Equation (21) and Table 11) <1999TL1505>. [Pg.495]

Fig. 9 Deprotonation of cations radicals of synthetic analogs of NADH by oxygen or nitrogen bases in acetonitrile. Correlation between the intrinsic barrier and the homolytic bond dissociation energy of the cation radical (AH + —> A+ + H ). Fig. 9 Deprotonation of cations radicals of synthetic analogs of NADH by oxygen or nitrogen bases in acetonitrile. Correlation between the intrinsic barrier and the homolytic bond dissociation energy of the cation radical (AH + —> A+ + H ).
The assumed mechanism includes the activation of acetonitrile by iV-coordination to the metal center, followed by deprotonation with DBU. The generated carbanion, iV-coordinated to the ruthenium atom, adds to the corresponding electrophile, while the presence of the sodium salt allows the regeneration of the ruthenium catalyst. Both various types of aldehydes as well as activated aromatic imines have been successfully employed as electrophiles, providing the corresponding adducts 171 in good to high yields. [Pg.444]

Sample preparation requires only dissolution of the sample to a suitable concentration in a mixture of water and organic solvent, commonly methanol, isopropanol, or acetonitrile. A trace of formic acid or acetic acid is often added to aid protonation of the analyte molecules in the positive ionization mode. In negative ionization mode ammonia solution or a volatile amine is added to aid deprotonation of the analyte molecules. [Pg.28]

For the sake of comparison and mutual validation of methods for measuring large follow-up reaction rate constants, it is interesting to apply different methods to the same system. Such a comparison between high-scan-rate ultramicroelectrode cyclic voltammetry, redox catalysis, and laser flash photolysis has been carried out for the system depicted in Scheme 2.25, where methylacridan is oxidized in acetonitrile, generating a cation radical that is deprotonated by a base present in the reaction medium.20... [Pg.128]

The chemical reactivity of crown-ether complexes with neutral molecules has received little attention. Nakabayashi et al. (1976) have reported crown-ether catalysis in the reaction of thiols with l-chloro-2,4-dinitrobenzene. The catalytic activity was attributed to deprotonation of thiols by dicyclohexyl-18-crown-6 in acetonitrile solution. Blackmer et al. (1978) found that the rate of aquation of the cobalt(III) complex [333] increases on addition of... [Pg.423]

A recently described approach involving zinc dust for eliminating acid allows acylation by 9-fluorenylmethoxycarbonyl chloride without dimer formation. The amino acid is dissolved in acetonitrile with the aid of hydrochloric acid, and zinc dust is added to destroy the acid and deprotonate the zwitter-ion, reducing the protons to gaseous hydrogen (Figure 3.16). Acylation is effected in the presence of zinc dust, which reduces the proton that is liberated by the reaction as soon it is formed. See Section 7.7 for another possible impurity in Fmoc amino acids.34,36-39... [Pg.81]

Product 34 predominates in the polar aprotic solvent (acetonitrile), while in the polar protic solvent (methanol) products 35 are formed preferentially. The different products are caused by the relative rate of deprotonation against desilylation of the aminium radical, that is in turn governed by the action of enone anion radical in acetonitrile as opposed to that of nucleophilic attack by methanol. In an aprotic, less silophilic solvent (acetonitrile), where the enone anion radical should be a strong base, the proton transfer is favoured and leads to the formation of product 34. In aprotic solvents or when a lithium cation is present, the enone anion radical basicity is reduced by hydrogen bonding or coordination by lithium cation, and the major product is the desilylated 35 (Scheme 4). [Pg.689]

Two possible mechanisms are proposed. Primarily the enol radical cation is formed. It either undergoes deprotonation because of its intrinsic acidity, producing an a-carbonyl radical, which is oxidized in a further one-electron oxidation step to an a-carbonyl cation. Cyclization leads to an intermediate cyclo-hexadienyl cation. On the other hand, cyclization of the enol radical cation can be faster than deprotonation, producing a distonic radical cation, which, after proton loss and second one-electron oxidation, leads to the same cyclo-hexadienyl cation intermediate as in the first reaction pathway. After a 1,2-methyl shift and further deprotonation, the benzofuran is obtained. Since the oxidation potentials of the enols are about 0.3-0.5 V higher than those of the corresponding a-carbonyl radicals, the author prefers the first reaction pathway via a-carbonyl cations [112]. Under the same reaction conditions, the oxidation of 2-mesityl-2-phenylethenol 74 does not lead to benzofuran but to oxazole 75 in yields of up to 85 %. The oxazole 75 is generated by nucleophilic attack of acetonitrile on the a-carbonyl cation or the proceeding enol radical cation. [Pg.89]


See other pages where Acetonitrile deprotonation is mentioned: [Pg.212]    [Pg.212]    [Pg.183]    [Pg.100]    [Pg.140]    [Pg.21]    [Pg.182]    [Pg.200]    [Pg.330]    [Pg.66]    [Pg.393]    [Pg.393]    [Pg.397]    [Pg.14]    [Pg.383]    [Pg.127]    [Pg.261]    [Pg.370]    [Pg.377]    [Pg.71]    [Pg.101]    [Pg.574]    [Pg.379]    [Pg.849]    [Pg.775]    [Pg.114]    [Pg.17]    [Pg.335]    [Pg.357]    [Pg.240]    [Pg.337]    [Pg.30]    [Pg.692]    [Pg.851]    [Pg.132]    [Pg.59]    [Pg.163]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



© 2024 chempedia.info