Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetone isomer

F F (95) xO B-glucoslde B-glucoside Mixture - fungal metabolites. 500 MHz NMR on mixture of Acetone isomers as acetyl derivatives. Conjugation sites determined by NMR. Anomeric H 5.57 (7.7) 5.65 (7.7)... [Pg.192]

Arrange the isomers of molecular formula C4H9CI in order of decreasing rate of reaction with sodium iodide in acetone... [Pg.358]

In this process, the fine powder of lithium phosphate used as catalyst is dispersed, and propylene oxide is fed at 300°C to the reactor, and the product, ahyl alcohol, together with unreacted propylene oxide is removed by distihation (25). By-products such as acetone and propionaldehyde, which are isomers of propylene oxide, are formed, but the conversion of propylene oxide is 40% and the selectivity to ahyl alcohol reaches more than 90% (25). However, ahyl alcohol obtained by this process contains approximately 0.6% of propanol. Until 1984, ah ahyl alcohol manufacturers were using this process. Since 1985 Showa Denko K.K. has produced ahyl alcohol industriahy by a new process which they developed (6,7). This process, which was developed partiy for the purpose of producing epichlorohydrin via ahyl alcohol as the intermediate, has the potential to be the main process for production of ahyl alcohol. The reaction scheme is as fohows ... [Pg.74]

Sorbic acid and its salts are highly refined to obtain the necessary purity for use in foods. The quaUty requirements are defined by the Food Chemicals Codex (Table 3). Codistillation or recrystaUization from water, alcohoHc solutions, or acetone is used to obtain sorbic acid and potassium sorbate of a purity that passes not only the Codex requirements but is sufficient for long-term storage. Measurement of the peroxide content and heat stabiUty can further determine the presence of low amounts of impurities. The presence of isomers, other than the trans,trans form, causes instabiUty and affects the melting point. [Pg.284]

Citral reacts in an aldol condensation using excess acetone and a basic catalyst, usually sodium hydroxide. The excess acetone can be recovered for recycle. The resulting intermediate pseudoionone [141-10-6] (83) after cyclization with phosphoric acid gives predominantly a-ionone [127-41 -3] (84), which is the isomer commercially important in flavors and fragrances. A hydrocarbon solvent is generally necessary in order to get high yields. P-Ionone [14901-07-6] (85) is the predominant isomer if sulfuric acid is used as the catalyst but lower temperature than that for cyclization to a-ionone is required. y-Ionone [79-6-5] (86) is also produced. [Pg.424]

Since the thermal dehydrocondensation proceeds by a free-radical mechanism (37), various radical-forrning promoters like acetone, ethanol, or methanol have been found useful in improving conversion of ben2ene to condensed polyphenyls. In the commercial dehydrocondensation process, ben2ene and some biphenyl are separated by distillation and recycled back to the dehydrocondensation step. Pure biphenyl is then collected leaving a polyphenyl residue consisting of approximately 4% o-terphenyl, 44% y -terphenyl, 25% -terphenyl, 1.5% triphenylene, and 22—27% higher polyphenyl and tars. Distillation of this residue at reduced pressure affords the mixed terphenyl isomers accompanied by a portion of the quaterphenyls present. [Pg.117]

Pure (9-terphenyl can be obtained by fractional distillation. To obtain high purity m- or -terphenyl, the appropriate distillation fraction has to be further purified by recrysta11i2ing, 2one refining, or other refining techniques. Currently, litde demand exists for pure isomers, and only a mixture is routinely produced. Small amounts of acetone, ethanol, or methanol are used to promote dehydrocondensation, and as a result, minor amounts of methyl- or methylene-substituted polyphenyls accompany the biphenyl and terphenyls produced. For most purposes, the level of such products (<1%) is so small that their presence can be ignored. For appHcations requiring removal of these alkyl-polyphenyl impurities, an efficient process for their oxidative destmction has been described (38). [Pg.117]

The general purification methods listed for xylene are applicable. p-Xylene can readily be separated from its isomers by crystn from such solvents as MeOH, EtOH, isopropanol, acetone, butanone, toluene, pentane or pentene. It can be further purified by fractional crystn by partial freezing, and stored over sodium wire or molecular sieves Linde type 4A. [Stokes and French J Chem Soc, Faraday Trans 1 76 537 1980.]... [Pg.387]

Unless great care is taken in control of phenol/acetone ratios, reaction conditions and the use of catalysts, a number of undesirable by-products may be obtained such as the o-,p- and o-,o- isomers of bis-phenol A and certain chroman-type structures. Although tolerable when the bis-phenol A is used in epoxy resins, these have adverse effects on both physical properties and the colour of polycarbonate resins. [Pg.558]

For most combinations of atoms, a number of molecular structures that differ fk m each other in the sequence of bonding of the atoms are possible. Each individual molecular assembly is called an isomer, and the constitution of a compound is the particular combination of bonds between atoms (molecular connectivity) which is characteristic of that structure. Propanal, allyl alcohol, acetone, 2-methyloxinine, and cyclopropanol each correspond to the molecular formula CjH O, but differ in constitution and are isomers of one another. [Pg.75]

Some instances of incomplete debromination of 5,6-dibromo compounds may be due to the presence of 5j5,6a-isomer of wrong stereochemistry for anti-coplanar elimination. The higher temperature afforded by replacing acetone with refluxing cyclohexanone has proved advantageous in some cases. There is evidence that both the zinc and lithium aluminum hydride reductions of vicinal dihalides also proceed faster with diaxial isomers (ref. 266, cf. ref. 215, p. 136, ref. 265). The chromous reduction of vicinal dihalides appears to involve free radical intermediates produced by one electron transfer, and is not stereospecific but favors tra 5-elimination in the case of vic-di-bromides. Chromous ion complexed with ethylene diamine is more reactive than the uncomplexed ion in reduction of -substituted halides and epoxides to olefins. ... [Pg.340]

Ester functions are not saponified under these ring opening conditions. However, a trans-a-acetoxy function hinders the epoxide opening reaction and a noticeable decrease in yield is observed in comparison to the cw-a-acetoxy isomer. The ring opening reaction is also dependent on the concentration of sulfuric acid. Polymer formation results when the acid concentration is too low and the reaction is markedly slower with excessive concentrations of acid. A 0.5% (vol./vol.) concentration of acid in DMSO is satisfactory. Ring opening does not occur when ethanol, acetone, or dioxane are used as solvent. [Pg.27]

The major product of this reaction is the yellow, labile, 1 2 molar adduct (134) corresponding to the pyridine series, along with a small amount of a colorless compound (139) which is discussed later and some phenanthridine oxalate. The labile adduct is converted to the stable isomer (135) on heating in quinoline or pyridine. Oxidation of both these adducts with potassium permanganate in acetone gives phenanthridone as the major product. In the case of the labile adduct. [Pg.160]

With unsymmetrical diketones the orientation of the reaction is again controlled by the reaction of the most reactive carbonyl group with the 5-position of the pyrimidine ring. Thus, benzoyl acetone and 6-aminouraoil gave 5-methyd-7-phenylpyrido[2,3-d]pyrimidine-2,4-(lH,3iI)-dione (71), in preference to the 5-phenyl isomer (72). ... [Pg.164]

The hydrazone structure 40 can be eliminated at once many examples of this class of compounds are known and their properties are completely different from the diaziridines. For example, 3,3-dimethyldiaziridine has a heat of combustion of about 35 kcal higher than the isomeric acetone hydrazone. Further pairs of isomers of diaziridines and hydrazones are known. The spectrum eliminates both the hydrazone structure and the betaine structure 41. The diaziridines do not absorb in the UV range. In the infrared spectrum, absorption is completely absent in the double-bond region. - The NMR spectrum of 3,3-dimethyldiaziridine is in agreement with a formulation that has two equivalent iV-protons. ... [Pg.110]

In a variation on this scheme, the 15 acetate is first saponified and the resulting alcohol converted to the methanesul-fonate (49). Solvolysis in acetone results in what in essence is an SNi displacement and thus affords a 1 1 mixture of 15a and 153 isomers. The former is isolated to afford the desired product with the mammalian configuration at 15 (SO). Application of the epoxidation scheme mentioned above (44 to 46) leads to dinopros-tone (8). ... [Pg.35]

A -Octalone-2 An 8.5-g (0.058 mole) portion of the above octalone mixture is dissolved in 50 ml of 60-90° petroleum ether in a 125-ml Erlenmeyer flask and cooled in a Dry Ice-acetone bath for 1 hour. zJ -Octalone-2 crystallizes and is collected by suction filtration through a jacketed sintered-glass funnel, which is cooled with Dry Ice-acetone. The residue is washed with cold (—78°) petroleum ether, transferred rapidly to a clean 125-ml Erlenmeyer flask, and the crystallization and filtration steps are repeated. The residue, after the second filtration, is transferred to a small round-bottom flask, brought to room temperature (the solid melts), and distilled. By this procedure, about 5 g (34%) of purified zl" -octalone-2, bp 143-145°/15 mm, is obtained. The purified material contains 1-3% of the -isomer. [Pg.83]

In order to determine if any other condition is necessary they condensed acetone with the following isomers of the cycloeitrals —... [Pg.33]

In order to attempt to synthesise irone, experiments were made which finally led to the condensation of citral with acetone, in the presence of alkalis. Irone was not obtained, but an isomer, which Tiemann called pseudo-ionone, as follows —... [Pg.216]


See other pages where Acetone isomer is mentioned: [Pg.829]    [Pg.829]    [Pg.236]    [Pg.251]    [Pg.376]    [Pg.758]    [Pg.67]    [Pg.294]    [Pg.448]    [Pg.91]    [Pg.159]    [Pg.309]    [Pg.574]    [Pg.574]    [Pg.344]    [Pg.238]    [Pg.367]    [Pg.422]    [Pg.1063]    [Pg.758]    [Pg.47]    [Pg.301]    [Pg.12]    [Pg.181]    [Pg.181]    [Pg.87]    [Pg.157]    [Pg.271]    [Pg.289]    [Pg.95]    [Pg.91]    [Pg.238]   
See also in sourсe #XX -- [ Pg.498 ]




SEARCH



© 2024 chempedia.info