Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic anhydride, reduction

Acylation of the common starting 3,4-diaminonitrobenzene with furoyl chloride proceeds on the more basic amino group meta to the nitro group to give 140. This is then cyclized to imidazole 141 by means of acetic anhydride. Reduction of the nitro group (142), followed by condensation with ethyl acetoacetate affords furodazole (143) [26]. [Pg.215]

The single step conversion of methyl acetate to ethylidene diacetate is catalyzed by either a palladium or rhodium compound, a source of iodide, and a promoter. The mechanism is described as involving the concurrent generation of acetaldehyde and acetic anhydride which subsequently react to form ethylidene diacetate. An alternative to this scheme involves independent generation of acetaldehyde by reductive carbonylation of methanol or methyl acetate, or by acetic anhydride reduction. The acetaldehyde is then reacted with anhydride in a separate step. [Pg.136]

The reductive carbonylation conditions differ from Fenton s in having a high iodide concentration and a CO pressure of 300-500 psi. The patent indicates that CO inhibits acetic anhydride reduction. [Pg.147]

C. Acetaldehyde via Acetic Anhydride Reduction. Another route to... [Pg.149]

There are two process alternatives here. The acetaldehyde can be produced in excess acetic anhydride so EDA formation can occur in situ, similar to the work reported by Fenton (26). Alternatively, acetaldehyde can be isolated from acetic anhydride reduction and reacted with the anhydride in a separate step to form the desired EDA. [Pg.149]

TABLE III COBALT CATALYZED ACETIC ANHYDRIDE REDUCTION ... [Pg.151]

Unlike Ni , Pd does not form a stable binary carbonyl. When PdCl2 is carbonylated in acetic anhydride, reduction takes place to give the polymeric [Pd(CO)Cl] . However, Pd(CO)4 can only be prepared and studied using matrix-isolation techniques. [Pg.3548]

Acetyl bromide - Zinc/Acetic anhydride Reductive cleavage of ethers [59, 60]... [Pg.211]

Alkylation Reactions. DMF dialkyl acetals undergo a variety of reactions with 1,2-diols. For example, the reaction of trans-cyclohexane-l,2-diol with DMF dimethyl acetal leads to the formation of cyclohexane epoxide (eq 2) with inversion of configuration. Similarly, wej 0-l,2-diphenyl-l,2-ethanediol gives trans-stilbene epoxide stereospecifically (eq 3). This method has also been applied in the synthesis of cholestane epoxide from vicinal diols. If the intermediate 2-dimethylamino-1,3-dioxolane is treated with Acetic Anhydride, reductive elimination to the alkene occurs with retention of stereochemistry (eq 4). " ... [Pg.159]

When pyridine is treated with zinc dust and acetic anhydride, a type of reductive coupling occurs and the product is diacetyltetrahydrodipyridyl (I) this undergoes a curious change on heating yielding pyridine and a new diacetyl compound, 1 4 diacetyl 1 4-dihydropyridine (II). The latter is reduced by zinc and acetic acid to 4-ethylpyridine (III). [Pg.844]

Hydrolysis of the azlactone leads to the acylaminooinnamic acid the latter may be be reduced catal3rtlcally (Adams PtOj catalyst 40 lb. p.s.i.) and then hydrolysed by hydrochloric acid to the amino acid. Alternatively, the azlactone (say, of a-benzylaminocinnamic acid) may undergo reduction and cleavage with phosphorus, hydriodic acid and acetic anhydride directly to the a-amino acid (d/ p phenylalanine). [Pg.908]

Production of Eastman s entire acetic anhydride requirement from coal allows a reduction of 190,000 m /yr (1.2 million barrels/yr) in the amount of petroleum used for production of Eastman chemicals. Now virtually all of Eastman s acetyl products are made in part from coal-based feedstocks. Before the technology was introduced, these chemicals had been made from petroleum-based acetaldehyde. Reduced dependence on petroleum, much of which must be obtained from foreign sources, is important to maintain a strong domestic chemical industry. [Pg.167]

Ethynodiol diacetate (53) is prepared by reduction of the 3-oxo group of norethindrone (28) with lithium tributoxyalurninum hydride, followed by acylation with acetic anhydride-pyridine (78,79). It has been reported that higher yields can be obtained in the reduction step by using triethylanainoalurninum hydride (80). [Pg.214]

The most common oxidatiou states and corresponding electronic configurations of rhodium are +1 which is usually square planar although some five coordinate complexes are known, and +3 (t7 ) which is usually octahedral. Dimeric rhodium carboxylates are +2 (t/) complexes. Compounds iu oxidatiou states —1 to +6 (t5 ) exist. Significant iudustrial appHcatious iuclude rhodium-catalyzed carbouylatiou of methanol to acetic acid and acetic anhydride, and hydroformylation of propene to -butyraldehyde. Enantioselective catalytic reduction has also been demonstrated. [Pg.179]

Derivatives. Oxidation of pyrogaHol trimethyl ether with nitric acid, followed by reduction ia acetic anhydride and treatment of the product with aluminum chloride, affords 3,6-dihydroxy-2,4-dimethoxyacetophenone (228). 3,4,5-Trimethoxyphenol (antiarol) has been prepared by treatment of... [Pg.388]

Acylation. Reaction conditions employed to acylate an aminophenol (using acetic anhydride in alkaU or pyridine, acetyl chloride and pyridine in toluene, or ketene in ethanol) usually lead to involvement of the amino function. If an excess of reagent is used, however, especially with 2-aminophenol, 0,A/-diacylated products are formed. Aminophenol carboxylates (0-acylated aminophenols) normally are prepared by the reduction of the corresponding nitrophenyl carboxylates, which is of particular importance with the 4-aminophenol derivatives. A migration of the acyl group from the O to the N position is known to occur for some 2- and 4-aminophenol acylated products. Whereas ethyl 4-aminophenyl carbonate is relatively stable in dilute acid, the 2-derivative has been shown to rearrange slowly to give ethyl 2-hydroxyphenyl carbamate [35580-89-3] (26). [Pg.310]

The compound is odorless with a faintly acidic taste it is practically insoluble in water, ethanol and dilute acids but freely soluble in dilute aqueous alkaU with dissociation constants, pfC, 3.73, 7.9, 9.3. The compound is prepared by sodium hydrosulfite reduction of 3-nitro-4-hydroxyphenylarsonic acid [121 -19-7] and then acetylation in aqueous suspension with acetic anhydride at 50—55°C for 2 h (174,175). [Pg.314]

Production is by the acetylation of 4-aminophenol. This can be achieved with acetic acid and acetic anhydride at 80°C (191), with acetic acid anhydride in pyridine at 100°C (192), with acetyl chloride and pyridine in toluene at 60°C (193), or by the action of ketene in alcohoHc suspension. 4-Hydroxyacetanihde also may be synthesized directiy from 4-nitrophenol The available reduction—acetylation systems include tin with acetic acid, hydrogenation over Pd—C in acetic anhydride, and hydrogenation over platinum in acetic acid (194,195). Other routes include rearrangement of 4-hydroxyacetophenone hydrazone with sodium nitrite in sulfuric acid and the electrolytic hydroxylation of acetanilide [103-84-4] (196). [Pg.316]

The introduction of tritium into molecules is most commonly achieved by reductive methods, including catalytic reduction by tritium gas, PH2], of olefins, catalytic reductive replacement of halogen (Cl, Br, or I) by H2, and metal pH] hydride reduction of carbonyl compounds, eg, ketones (qv) and some esters, to tritium-labeled alcohols (5). The use of tritium-labeled building blocks, eg, pH] methyl iodide and pH]-acetic anhydride, is an alternative route to the preparation of high specific activity, tritium-labeled compounds. The use of these techniques for the synthesis of radiolabeled receptor ligands, ie, dmgs and dmg analogues, has been described ia detail ia the Hterature (6,7). [Pg.438]

Beecham P-lactamase iiihibitoi BRL 42715 [102209-75-6] (89, R = Na), C IlgN O SNa (105). Lithium diphenylamide, a weaker base, was used to generate the anion of (88) which on sequential treatment with l-methyl-l,2,3-ttia2ole-4-carbaldehyde and acetic anhydride gives a mixture of diastereomers of the bromoacetate (90). Reductive elimination then provided the (Z)-penem (89, R = d5 Q [ OC15 -p) as major product which on Lewis acid mediated deprotection gave BRL 42715 (89, R = Na). [Pg.14]

Catalytic hydrogenation of the nitrile function of cyanohydrins can give amines. As in the case of ordinary nitriles, catalytic reduction of cyanohydrins can yield a mixture of primary, secondary, and tertiary amines. Addition of acid or acetic anhydride to the reaction medium minimizes formation of secondary or tertiary amines through formation of the amine salt or acetamide derivative of the primary amine. [Pg.411]

Aminofurans cannot be prepared by reduction of 2-nitrofurans or by hydrolysis of 2-acetamidofurans. The latter are prepared by the reduction of 2-nitrofurans in the presence of acetic anhydride. Benzofuranone (161) and not 2-aminobenzofuran is obtained from tin and hydrochloric acid reduction of 2-nitrobenzo[h]furan (160). [Pg.74]

The electrochemical reduction of 3-nitrophthalic acid at controlled potentials gave 2,1-benzisoxazole-3-carboxylic acid. Cyclization is presumed to proceed via an intermediate oxime (67AHC(8)277). Treating 5-iodoanthranilic acid with acetic anhydride gave 3-acetoxy-5-iodo-2,l-benzisoxazole (596) (65JMC550). [Pg.124]

This method is an adaptation of that of Dengel. -Methoxy-phenylacetonitrile can also be prepared by the metathetical reaction of anisyl chloride with alkali cyanides in a variety of aqueous solvent mixtures by the nitration of phenylaceto-nitrile, followed by reduction, diazotization, hydrolysis, and methylation 1 by the reduction of ct-benzoxy- -methoxy-phenylacetonitrile (prepared from anisaldehyde, sodium cyanide, and benzoyl chloride) and by the reaction of acetic anhydride with the oxime of -methoxyphenylpyruvic acid. ... [Pg.52]


See other pages where Acetic anhydride, reduction is mentioned: [Pg.142]    [Pg.149]    [Pg.252]    [Pg.327]    [Pg.249]    [Pg.320]    [Pg.142]    [Pg.149]    [Pg.252]    [Pg.327]    [Pg.249]    [Pg.320]    [Pg.371]    [Pg.749]    [Pg.910]    [Pg.405]    [Pg.208]    [Pg.383]    [Pg.316]    [Pg.503]    [Pg.465]    [Pg.434]    [Pg.438]    [Pg.29]    [Pg.293]    [Pg.510]    [Pg.80]   
See also in sourсe #XX -- [ Pg.399 ]




SEARCH



Acetals reduction

© 2024 chempedia.info