Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetates alkynes

Experiments with terminal acetylenes, isolation of an intermediate acetal, alkyne hydratation studies, and ab initio calculations provide substantiation of a unified mechanism that rationalizes the reactions in which the complex formation between the alkyne and the iron(III) halides is the activating step (Scheme 12) [27]. [Pg.9]

In the formation of carbon-carbon bonds, cyclization reactions of various types are used. As an example of electrophiUc cyclization involving formation of carbon-carbon bonds and leading to tetrahydroxepines, the acetal-alkyne condensation <88TL636S) mediated by Lewis acids can be noted (Scheme 10). [Pg.53]

Diborane or aUcylboranes are used for reduaion of alkenes and alkynes via hydrobora-tion (see pp. 37f., 47f., 130f.) followed by hydrolysis of the borane with acetic acid (H.C. Brown, 1975). [Pg.96]

Numerous applications have been reported. A derivative of the (alkyn-1-yl)nucleosides 295. which have anticancer and antiviral activities, has been synthesized by this reaction. They are also used as chain-terminating nucleosides for DN.A. sequencing[l98,199]. In this reaction, use of DMF as the solvent is most important for successful operation[200]. Only the alkenyl bromide moiety in 2-bromo-3-aceto.xycycloheptene (296) reacts with alkynes without attacking the allylic acetate moiety[201]. [Pg.169]

Alkynes with EWGs are poor substrates for the coupling with halides. Therefore, instead of the inactive propynoate, triethyl orthopropynoate (350) is used for the coupling with aryl halides to prepare the arylpropynoate 351. The coupling product 353 of 3,3-dicthoxy-l-propyne (352) with an aryl halide is the precursor of an alkynal[260]. The coupling of ethoxy) tributylstan-nyl)acetylene (354) with aryl halides is a good synthetic method for the aryl-acetate 355[261]. [Pg.177]

The 2,3-alkadienyl acetate 851 reacts with terminal alkynes to give the 2-alkynyl-1,3-diene derivative 852 without using Cul and a base. In the absence of other reactants, the terminal alkyne 853 is formed by an unusual elimination as an intermediate, which reacts further with 851 to give the dimer 854. Hydrogenolysis of 851 with formic acid affords the 2, 4-diene 855[524]. [Pg.406]

Terminal alkynes react with propargylic carbonates at room temperature to afford the alka-l, 2-dien-4-yne 14 (allenylalkyne) in good yield with catalysis by Pd(0) and Cul[5], The reaction can be explained by the transmetallation of the (7-allenylpailadium methoxide 4 with copper acetylides to form the allenyKalk-ynyl)palladium 13, which undergoes reductive elimination to form the allenyl alkyne 14. In addition to propargylic carbonates, propargylic chlorides and acetates (in the presence of ZnCb) also react with terminal alkynes to afford allenylalkynes[6], Allenylalkynes are prepared by the reaction of the alkynyl-oxiranes 15 with zinc acetylides[7]. [Pg.455]

The cyclic enol ether 255 from the functionalized 3-alkynoI 254 was converted into the furans 256 by the reaction of allyl chloride, and 257 by elimination of MeOH[132], The alkynes 258 and 260, which have two hydroxy groups at suitable positions, are converted into the cyclic acetals 259 and 261. Carcogran and frontalin have been prepared by this reaction[124]. [Pg.501]

Pyrano[3,4-b]indol-3-ones are the most useful equivalents of the indol-2,3-quinodimethane synthon which are currently available for synthetic application. These compounds can be synthesized readily from indole-3-acetic acids and carboxylic anhydrides[5,6]. On heating with electrophilic alkenes or alkynes, adducts are formed which undergo decarboxylation to 1,2-dihydro-carbazoles or carbazoles, respectively. [Pg.167]

Lindlar catalyst (Section 9 9) A catalyst for the hydrogenation of alkynes to as alkenes It is composed of palladium which has been poisoned with lead(II) acetate and quino line supported on calcium carbonate... [Pg.1288]

The iodination reaction can also be conducted with iodine monochloride in the presence of sodium acetate (240) or iodine in the presence of water or methanolic sodium acetate (241). Under these mild conditions functionalized alkenes can be transformed into the corresponding iodides. AppHcation of B-alkyl-9-BBN derivatives in the chlorination and dark bromination reactions allows better utilization of alkyl groups (235,242). An indirect stereoselective procedure for the conversion of alkynes into (H)-1-ha1o-1-alkenes is based on the mercuration reaction of boronic acids followed by in situ bromination or iodination of the intermediate mercuric salts (243). [Pg.315]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

The direct combination of selenium and acetylene provides the most convenient source of selenophene (76JHC1319). Lesser amounts of many other compounds are formed concurrently and include 2- and 3-alkylselenophenes, benzo[6]selenophene and isomeric selenoloselenophenes (76CS(10)159). The commercial availability of thiophene makes comparable reactions of little interest for the obtention of the parent heterocycle in the laboratory. However, the reaction of substituted acetylenes with morpholinyl disulfide is of some synthetic value. The process, which appears to entail the initial formation of thionitroxyl radicals, converts phenylacetylene into a 3 1 mixture of 2,4- and 2,5-diphenylthiophene, methyl propiolate into dimethyl thiophene-2,5-dicarboxylate, and ethyl phenylpropiolate into diethyl 3,4-diphenylthiophene-2,5-dicarboxylate (Scheme 83a) (77TL3413). Dimethyl thiophene-2,4-dicarboxylate is obtained from methyl propiolate by treatment with dimethyl sulfoxide and thionyl chloride (Scheme 83b) (66CB1558). The rhodium carbonyl catalyzed carbonylation of alkynes in alcohols provides 5-alkoxy-2(5//)-furanones (Scheme 83c) (81CL993). The inclusion of ethylene provides 5-ethyl-2(5//)-furanones instead (82NKK242). The nickel acetate catalyzed addition of r-butyl isocyanide to alkynes provides access to 2-aminopyrroles (Scheme 83d) (70S593). [Pg.135]

Alkynic esters react with nitrile oxides in a pH dependent reaction to product isoxazolin-5-ones (Scheme 145) (71JCS(C)86). Alkynic ethers also react with benzonitrile oxide to produce an isoxazole-ether which on treatment with HCl or HBr gave an isoxazolinone (Scheme 145) (63CB1088,58MI41600). The reaction of benzonitrile oxide with dimethoxyketene yielded a dimethyl acetal which was split with acid into the isoxazolinone (Scheme 145) (59G15H). [Pg.104]

Alkynes react with mercuric acetate in acetic acid to give addition products. In the case of 3-hexyne, the product has -stereochemistry, but the Z-isomer is isolated from diphenylacetylene. The kinetics of the addition reaction are first-order in both alkyne and... [Pg.375]

The alkynylation of estrone methyl ether with the lithium, sodium and potassium derivatives of propargyl alcohol, 3-butyn-l-ol, and propargyl aldehyde diethyl acetal in pyridine and dioxane has been studied by Miller. Every combination of alkali metal and alkyne tried, but one, gives the 17a-alkylated products (65a), (65c) and (65d). The exception is alkynylation with the potassium derivative of propargyl aldehyde diethyl acetal in pyridine at room temperature, which produces a mixture of epimeric 17-(3, 3 -diethoxy-T-propynyl) derivatives. The rate of alkynylation of estrone methyl ether depends on the structure of the alkyne and proceeds in the order propar-gylaldehyde diethyl acetal > 3-butyn-l-ol > propargyl alcohol. The reactivity of the alkali metal salts is in the order potassium > sodium > lithium. [Pg.68]

Two new sections on the protection of phosphates and the alkyne-CH are included. All other sections of the book have been expanded, some more than others. The section on the protection of alcohols has increased substantially, reflecting the trend of the nineties to synthesize acetate- and propionate-derived natural products. An effort was made to include many more enzymatic methods of protection and deprotection. Most of these are associated with the protection of alcohols as esters and the protection of carboxylic acids. Here we have not attempted to be exhaustive, but hopefully, a sufficient number of cases are provided that illustrate the true power of this technology, so that the reader will examine some of the excellent monographs and review articles cited in the references. The Reactivity Charts in Chapter 10 are identical to those in the first edition. The chart number appears beside the name of each protective group when it is first introduced. No attempt was made to update these Charts, not only because of the sheer magnitude of the task, but because it is nearly impossible in... [Pg.785]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Acetylene.. H—C= C—H, the simplest alkyne, was once widely used in industry as the starting material for the preparation of acetaldehyde, acetic acid, vinyl chloride, and other high-volume chemicals, but more efficient routes to these substances using ethylene as starting material are now available. Acetylene is still used in the preparation of acrylic polymers but is probably best known as the gas burned in high-temperature oxy-acetylene welding torches. [Pg.259]

Because of its generality, acetylide alkylation is an excellent method for preparing substituted alkynes from simpler precursors. A terminal alkyne can be prepared by alkylation of acet dene itself, and an internal alkyne can be prepared by further alkylation of a terminal alkyne. [Pg.273]

DNA sequencing and. 1113 Electrospray ionization (ESI) mass spectrometry, 417-418 Electrostatic potential map, 37 acetaldehyde, 688 acetamide, 791,922 acetate ion. 43. 53, 56, 757 acetic acid. 53. 55 acetic acid dimer, 755 acetic anhydride, 791 acetone, 55, 56. 78 acetone anion, 56 acetyl azide, 830 acetyl chloride, 791 acetylene. 262 acetylide anion, 271 acid anhydride, 791 acid chloride, 791 acyl cation, 558 adenine, 1104 alanine, 1017 alanine zwitterion, 1017 alcohol. 75 alkene, 74, 147 alkyl halide, 75 alkyne. 74... [Pg.1295]


See other pages where Acetates alkynes is mentioned: [Pg.22]    [Pg.808]    [Pg.808]    [Pg.413]    [Pg.25]    [Pg.808]    [Pg.22]    [Pg.808]    [Pg.808]    [Pg.413]    [Pg.25]    [Pg.808]    [Pg.420]    [Pg.80]    [Pg.213]    [Pg.463]    [Pg.498]    [Pg.167]    [Pg.181]    [Pg.64]    [Pg.69]    [Pg.87]    [Pg.88]    [Pg.170]    [Pg.28]    [Pg.372]    [Pg.374]    [Pg.46]    [Pg.141]    [Pg.99]    [Pg.55]    [Pg.1283]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.3 , Pg.5 , Pg.7 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.3 , Pg.5 , Pg.7 , Pg.11 ]




SEARCH



2-Alkynal diethyl acetals

Acetals from alkynes

Acetates alkynes: acidic hydrogen

Acetic acid, alkyne hydrogenation, hydrogen donor

Alkyne-propargylic acetates

Alkynes mercuric acetate, reaction with

© 2024 chempedia.info