Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetate using pyrrolidine

The present preparation illustrates a general and convenient irethod for ring contraction of cyclic ketones. The first step is the usual procedure for the preparation of enamines. The second step involves 1,3-dipolar cycloaddition of diphenyl phosphorazidate to an enamine followed by ring contraction with evolution of nitrogen. Ethyl acetate and tetrahydrofuran can be used as a solvent in place of toluene. Pyrrolidine enamines from various cyclic ketones smoothly undergo the reaction under similar reaction conditions. Diphenyl (cycloalkyl-1-pyrrolidinylmethylene)phosphoramidates with 5,6,7, and 15 members in the ring have been prepared in yields of 68-76%. [Pg.194]

Enamines formed in this way may be distilled or used in situ. The ease of formation of the enamine depends on the structure of the secondary amine as well as the structure of the ketone. Thus pyrrolidine reacts faster than morpholine or piperidine, as expected from a rate-controlling transition state with imonium character. Six-membered ring ketones without a substituents form pyrrolidine enamines even at room temperature in methanol (20), and morpholine enamines are generated in cold acetic acid (21), but a-alkylcyclohexanones, cycloheptanone, and linear ketones react less readily. In such examples acid catalysis with p-toluenesulfonic acid or... [Pg.315]

Reduction of iV-(3-bromopropyl) imines gives a bromo-amine in situ, which cyclizes to the aziridine. Five-membered ring amines (pyrrolidines) can be prepared from alkenyl amines via treatment with N-chlorosuccinimide (NCS) and then BusSnH. " Internal addition of amine to allylic acetates, catalyzed by Pd(PPh3)4, leads to cyclic products via a Sn2 reaction. Acyclic amines can be prepared by a closely related reaction using palladium catalysts. Three-membered cyclic amines (aziridines)... [Pg.500]

Using the chiral a-amino acetal 1-120 ion and two different N-nucleophiles 1-122 and 1-123, the pyrrolidines 1-124 and 1-125, respectively, are obtained in good di-... [Pg.28]

As expected, some sequences also occur where a domino anionic/pericyclic process is followed by another bond-forming reaction. An example of this is an anionic/per-icyclic/anionic sequence such as the domino iminium ion formation/aza-Cope/ imino aldol (Mannich) process, which has often been used in organic synthesis, especially to construct the pyrrolidine framework. The group of Brummond [450] has recently used this approach to synthesize the core structure 2-885 of the immunosuppressant FR 901483 (2-886) [451] (Scheme 2.197). The process is most likely initiated by the acid-catalyzed formation of the iminium ion 2-882. There follows an aza-Cope rearrangement to produce 2-883, which cyclizes under formation of the aldehyde 2-884. As this compound is rather unstable, it was transformed into the stable acetal 2-885. The proposed intermediate 2-880 is quite unusual as it does not obey Bredf s rule. Recently, this approach was used successfully for a formal total synthesis of FR 901483 2-886 [452]. [Pg.185]

More recently, Kaiser and coworkers reported enantiomeric specificity in the reaction of cyclohexaamylose with 3-carboxy-2,2,5,5-tetramethyl-pyrrolidin-l-oxy m-nitrophenyl ester (1), a spin label useful for identifying enzyme-substrate interactions (Flohr et al., 1971). In this case, the catalytic mechanism is identical to the scheme derived for the reactions of the cycloamyloses with phenyl acetates. In fact, the covalent intermediate, an acyl-cyclohexaamylose, was isolated. Maximal rate constants for appearance of m-nitrophenol at pH 8.62 (fc2), rate constants for hydrolysis of the covalent intermediate (fc3), and substrate binding constants (Kd) for the two enantiomers are presented in Table VIII. Significantly, specificity appears in the rates of acylation (fc2) rather than in either the strength of binding or the rate of deacylation. [Pg.233]

The concentration of copper in the column eluent was determined by flame atomic absorption spectroscopy of samples which were preconcentrated with ammonium pyrrolidine dithiocarbamate (APDC) and methyl isobutyl ketone. The pH of the acidified sample was adjusted to pH 2.5-3.5 using 400 pi 8 M ammonium acetate (Chelex cleaned). [Pg.175]

The total syntheses of these pepper alkaloids are not those of pyrrolidines but rather syntheses of their acid parts. Thus dihydrowisanidine (137) has been prepared by a series of reactions, the key step of which is the formation of the carbon-carbon double bond by a Wittig-Homer reaction (217, 218). Schemes 41 and 42 summarize two syntheses of okolasine from sesamolmethyl ether (279) of course, routes to okolasine also yield the corresponding piperidine alkaloid wisanine. Molybdenum-catalyzed elimination of allylic acetate (149) yielded (E,E)-diene ester 150 en route to trichonine (220) worthy of note is the use of an aluminum amide in the preparation of amide 143 from ester 150 (Scheme 43). [Pg.326]

In a subsequent study, Schnitzer and Spiteller [15] hydrolyzed each fraction with 2 M H2S04. After neutralization of the soluble materials, the latter were reduced with NaBH4 and then acetylated. The resulting acetates were analyzed by capillary gas chromatography/mass spectrometry, and identified by comparing their mass spectra with those of reference compounds of known structures and with literature data. Eighteen N-heterocyclics were identified. These compounds induded hydroxy-and oxy-indoles, quinolines, isoquinolines, aminobenzofurans, piperidines, pyrro-lines, and pyrrolidines. In addition, a number of benzylamines and nitriles were also identified. It is noteworthy that the N heterocyclics were isolated and identified without the use of pyrolysis. [Pg.122]

On the other hand, the method of Mukaiyama can be succesfully applied to silyl enol ethers of acetic and propionic acid derivatives. For example, perfect stereochemical control is attained in the reaction of silyl enol ether of 5-ethyl propanethioate with several aldehydes including aromatic, aliphatic and a,j5-unsaturated aldehydes, with syir.anti ratios of 100 0 and an ee >98%, provided that a polar solvent, such as propionitrile, and the "slow addition procedure " are used. Thus, a typical experimental procedure is as follows [32e] to a solution of tin(II) triflate (0.08 mmol, 20 mol%) in propionitrile (1 ml) was added (5)-l-methyl-2-[(iV-l-naphthylamino)methyl]pyrrolidine (97b. 0.088 mmol) in propionitrile (1 ml). The mixture was cooled at -78 °C, then a mixture of silyl enol ether of 5-ethyl propanethioate (99, 0.44 mmol) and an aldehyde (0.4 mmol) was slowly added to this solution over a period of 3 h, and the mixture stirred for a further 2 h. After work-up the aldol adduct was isolated as the corresponding trimethylsilyl ether. Most probably the catalytic cycle is that shown in Scheme 9.30. [Pg.267]

The synthesis of oxygen- and nitrogen-containing heterocyclic compounds by anionic cyclization of unsaturated organolithium compounds has been reviewed recently. " Broka and Shen reported the first intramolecular reaction of an unstabilized a-amino-organolithium compound using reductive lithiation of an A,5-acetal derived from a homoaUylic secondary amine (Scheme 21). Just one example was reported treatment with lithium naphthalenide gave the pyrrolidine product, predominantly as the cis isomer. [Pg.1016]

The nitrosation of 2,5-diphenylpyrrolidine in an ice-cold solution of ethanol and hydrochloric acid with sodium nitrite produced the expected iV-nitroso-2,5-diphenylpyrrolidine. The product could be separated into trans and cis isomers by fractional crystallization using acetone-water mixtures. The ratio of trans to cis isomer was found to be 2.5 1. When the nitrosation was carried out in an acetic acid solution, the ratio of trans to cis isomer remained the same although the yield of the identified products was somewhat lower (71 vs 56 %) [29]. The ratio of the isomers of the starting pyrrolidine was not reported. [Pg.223]


See other pages where Acetate using pyrrolidine is mentioned: [Pg.145]    [Pg.13]    [Pg.340]    [Pg.178]    [Pg.556]    [Pg.340]    [Pg.8]    [Pg.87]    [Pg.91]    [Pg.86]    [Pg.122]    [Pg.398]    [Pg.134]    [Pg.195]    [Pg.248]    [Pg.143]    [Pg.234]    [Pg.111]    [Pg.352]    [Pg.354]    [Pg.251]    [Pg.255]    [Pg.119]    [Pg.141]    [Pg.791]    [Pg.154]    [Pg.358]    [Pg.55]    [Pg.542]    [Pg.12]    [Pg.119]    [Pg.141]    [Pg.163]    [Pg.315]    [Pg.474]    [Pg.354]    [Pg.304]    [Pg.218]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



© 2024 chempedia.info