Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetate and alkenes

Ketene acetals and thioacetals can be used as ketene equivalents in cyclobutanone synthesis in situations where ketene to alkene cycloadditions are inefficient such as in the case of electron-deficient alkenes.14 Although thermal cycloadditions of ketene acetals and thioacetals with electron-deficient alkenes have been observed (see Section 1,3.2.1.), such cycloadditions proceed more efficiently and under milder conditions with metal catalysts. Efficient cycloadditions between ketene dimethyl acetal and alkenes substituted by a single electron-withdrawing group have been reported.15... [Pg.145]

This following article was sent to Strike by Osmium and Feck (are they the same person ). It involves the direct addition of azide to a terminal alkene (you-know-who) by the in situ production of the reactant mercury (II) azide from mercuric acetate and sodium azide (please don t ask) [80]. [Pg.184]

In contrast to oxidation in water, it has been found that 1-alkenes are directly oxidized with molecular oxygen in anhydrous, aprotic solvents, when a catalyst system of PdCl2(MeCN)2 and CuCl is used together with HMPA. In the absence of HMPA, no reaction takes place(100]. In the oxidation of 1-decene, the Oj uptake correlates with the amount of 2-decanone formed, and up to 0.5 mol of O2 is consumed for the production of 1 mol of the ketone. This result shows that both O atoms of molecular oxygen are incorporated into the product, and a bimetallic Pd(II) hydroperoxide coupled with a Cu salt is involved in oxidation of this type, and that the well known redox catalysis of PdXi and CuX is not always operalive[10 ]. The oxidation under anhydrous conditions is unique in terms of the regioselective formation of aldehyde 59 from X-allyl-A -methylbenzamide (58), whereas the use of aqueous DME results in the predominant formation of the methyl ketone 60. Similar results are obtained with allylic acetates and allylic carbonates[102]. The complete reversal of the regioselectivity in PdCli-catalyzed oxidation of alkenes is remarkable. [Pg.30]

Oxidation of ethylene in alcohol with PdCl2 in the presence of a base gives an acetal and vinyl ether[106,107], The reaction of alkenes with alcohols mediated by PdCl2 affords acetals 64 as major products and vinyl ethers 65 as minor products. No deuterium incorporation was observed in the acetal formed from ethylene and MeOD, indicating that hydride shift takes place and the acetal is not formed by the addition of methanol to methyl vinyl etherjlOS], The reaction can be carried out catalytically using CuClj under oxygen[28]. [Pg.31]

Efficient acetalization of alkenes bearing various EWG with an optically active 1.3-diol 72 proceeds smoothly utilizing PdCN, CuCI. and O2 in DME to give the 1,3-dioxane 73[113], Methacrylamide bearing 4-t-butyloxazolidin-2-one 74 as a chiral auxiliary reacts with MeOH in the presence of PdCE catalyst... [Pg.31]

With higher alkenes, three kinds of products, namely alkenyl acetates, allylic acetates and dioxygenated products are obtained[142]. The reaction of propylene gives two propenyl acetates (119 and 120) and allyl acetate (121) by the nucleophilic substitution and allylic oxidation. The chemoselective formation of allyl acetate takes place by the gas-phase reaction with the supported Pd(II) and Cu(II) catalyst. Allyl acetate (121) is produced commercially by this method[143]. Methallyl acetate (122) and 2-methylene-1,3-diacetoxypropane (123) are obtained in good yields by the gas-phase oxidation of isobutylene with the supported Pd catalyst[144]. [Pg.38]

It is possible to prepare 1-acetoxy-4-chloro-2-alkenes from conjugated dienes with high selectivity. In the presence of stoichiometric amounts of LiOAc and LiCl, l-acetoxy-4-chloro-2-hutene (358) is obtained from butadiene[307], and cw-l-acetoxy-4-chloro-2-cyclohexene (360) is obtained from 1.3-cyclohexa-diene with 99% selectivity[308]. Neither the 1.4-dichloride nor 1.4-diacetate is formed. Good stereocontrol is also observed with acyclic diene.s[309]. The chloride and acetoxy groups have different reactivities. The Pd-catalyzed selective displacement of the chloride in 358 with diethylamine gives 359 without attacking allylic acetate, and the chloride in 360 is displaced with malonate with retention of the stereochemistry to give 361, while the uncatalyzed reaction affords the inversion product 362. [Pg.69]

Peroxy acid and alkene Transition state for oxygen transfer from the OH group of the peroxy acid to the alkene Acetic acid and epoxide ... [Pg.262]

Both objectives have been met by designing special hydrogenation catalysts The most frequently used one is the Lindlar catalyst, a palladium on calcium carbonate combi nation to which lead acetate and quinoline have been added Lead acetate and quinoline partially deactivate ( poison ) the catalyst making it a poor catalyst for alkene hydro genation while retaining its ability to catalyze the addition of H2 to the triple bond... [Pg.375]

Lindlar catalyst (Section 9 9) A catalyst for the hydrogenation of alkynes to as alkenes It is composed of palladium which has been poisoned with lead(II) acetate and quino line supported on calcium carbonate... [Pg.1288]

Other isocyanates undergo [2 + 2] cycloaddition, but only with very electron rich alkenes. Thus phenyl isocyanate gives /3-lactams with ketene acetals and tetramethoxyethylene. With enamines, unstable /3-lactams are formed if the enamine has a /3-H atom, ring opened amides are produced 2 1 adducts are also found. Photochemical addition of cis- and traH5-stilbene to phenyl isocyanate has also been reported (72CC362). [Pg.261]

Replacement of silver nitrite by inexpensive sodiiunor potassium nitrite enhances the imlity of this process Treatment of alkenes v/ith sodiiun nitrite and iodine in ethyl acetate and water in the presence of ethylene glycol gives conjngatednitroalkenesin49-82% yield The method for generation of nitryl iodide is improved by the treatment of iodme v/ith potassium nitrite complexed v/ith 18-crovm-6 in THF under sonicadon, as shovmin Eq 2 32 ... [Pg.14]

Complete reduction to the alkane occurs when palladium on carbon (Pd/C) is used as catalyst, but hydrogenation can be stopped at the alkene if the less active Lindlar catalyst is used. The Lindlar catalyst is a finely divided palladium metal that has been precipitated onto a calcium carbonate support and then deactivated by treatment with lead acetate and quinoline, an aromatic amine. The hydrogenation occurs with syn stereochemistry (Section 7.5), giving a cis alkene product. [Pg.268]

The synthesis of 2-chloro-2,3,3-trifluorocyclobutyl acetate illustrates a general method of preparing cyclobutanes by heating chlorotrifluoroethylene, tetrafluoroethylene, and other highly fluorinated ethylenes with alkenes. The reaction has recently been reviewed.11 Chlorotrifluoroethylene has been shown to form cyclobutanes in this way with acrylonitrile,6 vinylidene chloride,3 phenylacetylene,7 and methyl propiolate.3 A far greater number of cyclobutanes have been prepared from tetrafluoroethylene and alkenes 4,11 when tetrafluoroethylene is used, care must be exercised because of the danger of explosion. The fluorinated cyclobutanes can be converted to a variety of cyclobutanes, cyclobutenes, and butadienes. [Pg.21]

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

Formylation of alkenes can be accomplished with N-disubstituted formamides and POCl3. ° This is an aliphatic Vilsmeier reaction (see 11-15). Vilsmeier formylation can also be performed on the ot position of acetals and ketals, so that hydrolysis of the products gives keto aldehydes or dialdehydes ... [Pg.785]

For those substrates more susceptible to nucleophilic attack (e.g., polyhalo alkenes and alkenes of the type C=C—Z), it is better to carry out the reaction in basic solution, where the attacking species is RO . The reactions with C=C—Z are of the Michael type, and OR goes to the side away from the Z. Since triple bonds are more susceptible to nucleophilic attack than double bonds, it might be expected that bases would catalyze addition to triple bonds particularly well. This is the case, and enol ethers and acetals can be produced by this reaction. Because enol ethers are more susceptible than triple bonds to electrophilic attack, the addition of alcohols to enol ethers can also be catalyzed by acids. " One utilization of this reaction involves the compound dihydropyran... [Pg.996]

Many other reagents for converting alkenes to epoxides,including H2O2 and Oxone , VO(0-isopropyl)3 in liquid C02, ° polymer-supported cobalt (II) acetate and 02, ° and dimethyl dioxirane.This reagent is rather versatile, and converts methylene oxiranes to spiro-epoxides. ° ° One problem with dimethyloxirane is C—H insertion reactions rather than epoxidation. Magnesium monoperoxyphthalate is commercially available, and has been shown to be a good substitute for m-chloroperoxybenzoic acid in a number of reactions. [Pg.1054]

Using the above procedures, allyl a-azido alkyl ethers of type 281 were prepared by employing an unsaturated alcohol such as allyl alcohol [76] (Scheme 32). The reaction of an aldehyde with allyl alcohol and HN3 in a ratio of 1 3 9 carried out in the presence of TiCl4 as catalyst provided azido ethers 281, 283, and 285 in 70-90% yield. The ratio of reagents is critical to ensure a high yield of azido ether and to prevent formation of acetal and diazide side products [75]. Thermolysis of azido alkenes 281, 283, and 285 in benzene (the solvent of choice) for 6-20 h led to 2,5-dihydrooxazoles 282,284, and 286, respectively, in 66-90% yield. [Pg.41]


See other pages where Acetate and alkenes is mentioned: [Pg.92]    [Pg.92]    [Pg.418]    [Pg.107]    [Pg.552]    [Pg.314]    [Pg.380]    [Pg.92]    [Pg.92]    [Pg.418]    [Pg.107]    [Pg.552]    [Pg.314]    [Pg.380]    [Pg.90]    [Pg.127]    [Pg.367]    [Pg.550]    [Pg.453]    [Pg.84]    [Pg.69]    [Pg.88]    [Pg.108]    [Pg.251]    [Pg.543]    [Pg.923]    [Pg.923]    [Pg.931]    [Pg.1050]    [Pg.284]    [Pg.307]    [Pg.707]    [Pg.128]    [Pg.126]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Acetates alkenes

Alkenes acetalization

© 2024 chempedia.info