Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals electrophiles

Numerous alkene derivatives that possess one electron-releasing substituent have been found to react with salt (1). These include enamines, enamides, enecarbamates, enol ethers and enol acetates. Electrophilic substitution of these alkene derivatives occurs readily, yielding iminium salts that have found substantial use in synthesis. ... [Pg.783]

If acetoxylation were a conventional electrophilic substitution it is hard to understand why it is not more generally observed in nitration in acetic anhydride. The acetoxylating species is supposed to be very much more selective than the nitrating species, and therefore compared with the situation in (say) toluene in which the ratio of acetoxylation to nitration is small, the introduction of activating substituents into the aromatic nucleus should lead to an increase in the importance of acetoxylation relative to nitration. This is, in fact, observed in the limited range of the alkylbenzenes, although the apparently severe steric requirement of the acetoxylation species is a complicating feature. The failure to observe acetoxylation in the reactions of compounds more reactive than 2-xylene has been attributed to the incursion of another mechan-104... [Pg.104]

The heats of formation of Tt-complexes are small thus, — A//2soc for complexes of benzene and mesitylene with iodine in carbon tetrachloride are 5-5 and i2-o kj mol , respectively. Although substituent effects which increase the rates of electrophilic substitutions also increase the stabilities of the 7r-complexes, these effects are very much weaker in the latter circumstances than in the former the heats of formation just quoted should be compared with the relative rates of chlorination and bromination of benzene and mesitylene (i 3 o6 x 10 and i a-Sq x 10 , respectively, in acetic acid at 25 °C). [Pg.117]

C—C double bonds may be protected against electrophiles by epoxidation and subsequent removal of the oxygen atom by treatment with zinc and sodium iodide in acetic acid (J.A. Edwards, 1972 W. Kndll, 1975). Halogenation has often been used for protection, too. The C—C double bond is here also easily regenerated with zinc (see p. 138, D.H.R. Barton, 1976). [Pg.156]

The resulting macrocyclic ligand was then metallated with nickel(II) acetate. Hydride abstraction by the strongly electrophilic trityl cation and proton elimination resulted in the formation of carbon-carbon double bonds (T.J. Truex, 1972). [Pg.249]

Laurino examined a similar method in which methanesulfonanilides were alkylated with bromoacetaldehyde diethyl acetal and then cyclized with TiCU[4J. 1 hese methods presumably involve generation of an electrophilic intermediate from the acetal functionality, followed by an intramolecular Friedel-Crafts reaction. As a consequence, the cyclization is favoured by ER substituents and retarded by EW groups on the benzene ring. [Pg.42]

Alkylation can also be accomplished with electrophilic alkenes. There is a dichotomy between basic and acidic conditions. Under basic conditions, where the indole anion is the reactive nucleophile, A-alkylation occurs. Under acidic conditions C-alkylation is observed. The reaction of indole with 4-vinylpyri-dine is an interesting illustration. Good yields of the 3-alkylation product are obtained in refluxing acetic acid[18] whereas if the reaction is done in ethanol containing sodium ethoxide 1-alkylation occurs[19]. Table 11.2 gives some examples of 3-alkylation using electrophilic alkenes. [Pg.107]

Pyrano[3,4-b]indol-3-ones are the most useful equivalents of the indol-2,3-quinodimethane synthon which are currently available for synthetic application. These compounds can be synthesized readily from indole-3-acetic acids and carboxylic anhydrides[5,6]. On heating with electrophilic alkenes or alkynes, adducts are formed which undergo decarboxylation to 1,2-dihydro-carbazoles or carbazoles, respectively. [Pg.167]

The problem is more complicated when the ambident nucleophile. 2-aminothiazole, reacts with an ambident electrophilic center. Such an example is provided by the reaction between 2-amino-5-R-thiazole and ethoxycarbonyl isothiocyanate (144), which has been thoroughly studied by Nagano et al. (64, 78, 264) the various possibilities are summarized in Scheme 95. At 5°C, in ethyl acetate, the only observed products were 145a, 148. and 150. Product 148 must be heated to 180°C for 5 hr to give in low yield (25%) the thiazolo[3.2-a]-s-tnazine-2-thio-4-one (148a) (102). This establishes that attack 1-B is probably not possible at -5°C. When R = H the percentages of 145a. 148. and 150 are 29, 50, and 7%, respectively. These results show that ... [Pg.61]

Reaction of benzamhde (C6H5NHCC6H5) with chlorine in acetic acid yields a mixture of two monochloro denvatives formed by electrophilic aromatic substitution Suggest reasonable structures for these two isomers... [Pg.514]

Fluoronaphthalene [321-38-0] is prepared from 1-naphthylamine by the Balz-Schiemaim reaction in 52% yield or by diazotization in anhydrous hydrogen fluoride in 82% yield. Electrophilic substitution occurs at the 4-position, eg, nitration with fuming nitric acid in acetic acid gave 88% yield of l-fluoro-4-nitro-naphthalene [341 -92-4]. [Pg.328]

Several electrophiles, such as acetic anhydride, nitric acid or alternative nitrating agents, such as ammonium nitrate in trifluoroacetic anhydride (41), or sodium hypochlorite, react at N-1, which is followed by reaction at N-3 under suitable conditions. In the case of acetic anhydride, the reaction can take place exclusively at N-3 if N-1 is hindered this fact has served as a criterion for studying the stereochemistry of 5-spirohydantoin derivatives (42,43). [Pg.251]

The N-oxide function has proved useful for the activation of the pyridine ring, directed toward both nucleophilic and electrophilic attack (see Amine oxides). However, pyridine N-oxides have not been used widely ia iadustrial practice, because reactions involving them almost iavariably produce at least some isomeric by-products, a dding to the cost of purification of the desired isomer. Frequently, attack takes place first at the O-substituent, with subsequent rearrangement iato the ring. For example, 3-picoline N-oxide [1003-73-2] (40) reacts with acetic anhydride to give a mixture of pyridone products ia equal amounts, 5-methyl-2-pyridone [1003-68-5] and 3-methyl-2-pyridone [1003-56-1] (11). [Pg.328]

An especially interesting case of oxygen addition to quinonoid systems involves acidic treatment with acetic anhydride, which produces both addition and esterification (eq. 3). This Thiele-Winter acetoxylation has been used extensively for synthesis, stmcture proof, isolation, and purification (54). The kinetics and mechanism of acetoxylation have been described (55). Although the acetyhum ion is an electrophile, extensive studies of electronic effects show a definite relationship to nucleophilic addition chemistry (56). [Pg.411]

Thalllum(III) Compounds. Tb allium (ITT) derivatives have been used extensively as oxidants in organic synthesis. In particular, thaUic acetate and ttifluoroacetate are extremely effective as electrophiles in oxythaHation and thaHation reactions. For example, ketones can be prepared from terminal acetylenes by means of (OOCCH ) in acetic acid (oxythaHation) (30) ... [Pg.470]

Many other reactions of ethylene oxide are only of laboratory significance. These iaclude nucleophilic additions of amides, alkaU metal organic compounds, and pyridinyl alcohols (93), and electrophilic reactions with orthoformates, acetals, titanium tetrachloride, sulfenyl chlorides, halo-silanes, and dinitrogen tetroxide (94). [Pg.454]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

As might be expected from a consideration of electronic effects, an amino substituent activates pyrazines, quinoxalines and phenazines to electrophilic attack, usually at positions ortho and para to the amino group thus, bromination of 2-aminopyrazine with bromine in acetic acid yields 2-amino-3,5-dibromopyrazine (Scheme 29). [Pg.177]

The reactivity of five-membered rings with one heteroatom to electrophilic reagents has been quantitatively compared in a variety of substitution reactions. Table 2 shows the rates of substitution compared to thiophene for formylation by phosgene and iV,AT-dimethylfor-mamide, acetylation by acetic anhydride and tin(IV) chloride, and trifluoroacetylation with trifluoroacetic anhydride (71AHC(13)235). [Pg.43]

The electrophilic substitution of thiophene is much easier than that of benzene thus, thiophene is protonated in aqueous sulphuric acid about 10 times more rapidly than benzene, and it is brominated by molecular bromine in acetic acid about 10 times more rapidly than benzene. Benzene in turn is between 10 and lo times more reactive than an uncharged pyridine ring to electrophilic substitution. [Pg.44]

Rate data are also available for the solvolysis of l-(2-heteroaryl)ethyl acetates in aqueous ethanol. Side-chain reactions such as this, in which a delocalizable positive charge is developed in the transition state, are frequently regarded as analogous to electrophilic aromatic substitution reactions. In solvolysis the relative order of reactivity is tellurienyl> furyl > selenienyl > thienyl whereas in electrophilic substitutions the reactivity sequence is furan > tellurophene > selenophene > thiophene. This discrepancy has been explained in terms of different charge distributions in the transition states of these two classes of reaction (77AHC(21)119>. [Pg.69]

The employment of non-protic electrophiles for the foregoing type of cyclizations as illustrated in Scheme 8 has the particular merit of leaving a useful point of departure for further transformations. Comparable cyclizations of 2-allyl-3-aminocyclohexenones with mercury(II) acetate are preceded by dehydrogenation to the corresponding 2-allyl-3-aminophenol as shown in Scheme 9 82TL3591). The preferred direction of cyclization depends upon the nucleophilicity of the amino group. [Pg.94]

Some weak electrophilic reagents, which are usually inert toward azoles, also react with quaternized azoles. Diazonium salts yield phenylhydrazones (Scheme 48) in a reaction analogous to the Japp-Klingemann transformation of /S-keto esters into phenylhydrazones in the dithiolylium series illustrated the product has bicyclic character. Cyanine dye preparations fall under this heading (see also Section 4.02.1.6.5). Monomethine cyanines are formed by reaction with an iodo quaternary salt, e.g. Scheme 49. Tri- and penta-methinecar-bocyanines (384 n = 1 and 2, respectively) are obtained by the reaction of two molecules of a quaternary salt with one molecule of ethyl orthoformate (384 n = 1) or/S-ethoxyacrolein acetal (384 n =2), respectively. [Pg.90]

The 2-thienylthiourea (245) on oxidation with bromine in acetic acid gave the thieno[3,2-djthiazole (247). It has been suggested that the intermediate electrophilic sulfenyl bromide adds to the 2,3-bond of the thiophene ring to form (246) when then loses HBr to give (247) (71AJC1229, 78JHC81). Pyrazolo(3,4- /]thiazoles are formed in a similar fashion (76GEP2429195). [Pg.135]

Bromine in chloroform and bromine in acetic acid are the reagents used most often to brominate pyrazole. When nitric acid is used as a solvent, both bromine and chlorine transform pyrazoles into pyrazolones (Scheme 24). Thus 3-methyl-l-(2,4-dinitrophe-nyOpyrazole is brominated at the 4-position (309). The product reacts with chlorine and nitric acid to give the pyrazolone (310). The same product results from the action of bromine and nitric acid on (311). The electrophilic attack of halogen at C-4 is followed by the nucleophilic attack of water at C-5 and subsequent oxidation by nitric acid. [Pg.240]

Electrophilic mercuration of isoxazoles parallels that of pyridine and other azole derivatives. The reaction of 3,5-disubstituted isoxazoles with raercury(II) acetate results in a very high yield of 4-acetoxymercury derivatives which can be converted into 4-broraoisoxazoles. Thus, the reaction of 5-phenylisoxazole (64) with mercury(II) acetate gave mercuriacetate (88) (in 90% yield), which after treatment with potassium bromide and bromine gave 4-bromo-5-phenylisoxazole (89) in 65% yield. The unsubstituted isoxazole, however, is oxidized under the same reaction conditions, giving mercury(I) salts. [Pg.26]

The reactions of ketenes or ketene equivalents with imines, discussed above, all involve the imine acting as nucleophile. Azetidin-2-ones can also be produced by nucleophilic attack of enolate anions derived from the acetic acid derivative on the electrophilic carbon of the imine followed by cyclization. The reaction of Reformatsky reagents, for example... [Pg.260]


See other pages where Acetals electrophiles is mentioned: [Pg.79]    [Pg.93]    [Pg.96]    [Pg.200]    [Pg.201]    [Pg.223]    [Pg.274]    [Pg.77]    [Pg.90]    [Pg.167]    [Pg.52]    [Pg.489]    [Pg.240]    [Pg.309]    [Pg.70]    [Pg.163]    [Pg.305]    [Pg.51]    [Pg.116]    [Pg.48]    [Pg.289]   


SEARCH



Electrophilic Amination of Silyl Ketene Acetals

Electrophilic silyl ketene acetals

Electrophilic silyl ketene acetals acetal

© 2024 chempedia.info