Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic acetals, synthesis

Vert de lilas is useful as an additive in soaps since acetals, unlike aldehydes and ketones, are stable to the alkali in soaps. The main use tor acetals in synthesis is as protecting groups for aldehydes and ketones (see Chapter 9). Cyclic acetals (e.g, 4) are usually used for ketones (Chapter 7) the disconnection is the same once the carbonyl carbon has been discovered. [Pg.48]

Synthesis of cyclic acetals Cyclic ketals (potential cosmetics ingredients) have been obtained in excellent yields from a cineole ketone under the action of microwave in solvent-free conditions or in toluene. The results reported compared very favorably with those obtained by use of conventional heating (Eq. (39), Table 4.11) [123]. [Pg.173]

E)-4-hydroxyenestannanes, with 2 extra C-atoms 44, 850 a-hydroxyketones 43,1 P-hydroxyketones 44,627 hydroxynitriles, synthesis 43, 558 2-hydroxythioethers 43,450 rran5-l,2-iodohydrins 44 922 ketene acetals, cyclic 44, 575... [Pg.245]

Phosphoric acid acetic acid Synthesis of cyclic ethylene derivs. from cyclic ketones... [Pg.484]

Synthesis of enamines from carboxylic acid amides via 1-alkoxyazomethinium salts and amide acetals Cyclic enamines via lactam acetals... [Pg.187]

The intramolecular oxidative earbonylation has wide synthetie applieation. The 7-lactone 247 is prepared by intramolecular oxycarbonylation of the alke-nediol 244 with a stoichiometric amount of Pd(OAc)2 under atmospheric pres-sure[223]. The intermediate 245 is formed by oxypalladation, and subsequent CO insertion gives the acylpalladium 246. The oxycarbonylation of alkenols and alkanediols can be carried out with a catalytic amount of PdCl2 and a stoichiometric amount of CuCb, and has been applied to the synthesis of frenolicin(224] and frendicin B (249) from 248[225]. The carbonylation of the 4-penten-l,3-diol 250, catalyzed by PdCl2 and CuCl2, afforded in the c -3-hydroxytetrahydrofuran-2-aeetie acid lactone 251[226J. The cyclic acetal 253 is prepared from the dienone 252 in the presence of trimethyl orthoformate as an accepter of water formed by the oxidative reaction[227]. [Pg.54]

Diacetoxylation of various conjugated dienes including cyclic dienes has been extensively studied. 1,3-Cyclohexadiene was converted into a mixture of isomeric l,4-diacetoxy-2-cyclohexenes of unknown stereochemistry[303]. The stereoselective Pd-catalyzed 1,4-diacetoxylation of dienes is carried out in AcOH in the presence of LiOAc and /or LiCI and beiizoquinone[304.305]. In the presence of acetate ion and in the absence of chloride ion, /rau.v-diacetox-ylation occurs, whereas addition of a catalytic amount of LiCl changes the stereochemistry to cis addition. The coordination of a chloride ion to Pd makes the cis migration of the acetate from Pd impossible. From 1,3-cyclohexadiene, trans- and ci j-l,4-diacetoxy-2-cyclohexenes (346 and 347) can be prepared stereoselectively. For the 6-substituted 1,3-cycloheptadiene 348, a high diaster-eoselectivity is observed. The stereoselective cij-diacetoxylation of 5-carbo-methoxy-1,3-cyclohexadiene (349) has been applied to the synthesis of dl-shikimic acid (350). [Pg.68]

The isoflavone 406 is prepared by the indirect a-phenylation of a ketone by reaction of phenylmercury(II) chloride with the enol acetate 405, prepared from 4-chromanone[371]. A simple synthesis of pterocarpin (409) has been achieved based on the oxypalladation of the oriho-mercurated phenol derivative 408 with the cyclic alkene 407[372,373]. [Pg.80]

Intramolecular amination with allylic acetates is used for the synthesis of cyclic alkaloids 175]. Cyclization of 293 affords the six-membered ring compound 294 rather than a four-membered ring. The reaction is particularly... [Pg.329]

Cyclic Acetals. One of the most significant developments in the chemistry of sucrose was the synthesis of cycHc acetals which, despite many attempts, were not synthesized until 1974. The first synthesis of 4,6-0-benzyhdenesucrose was achieved from the reaction of sucrose with a, a-dibromotoluene in pyridine (29). Since then, many new acetalating reagents have been used to give a variety of sucrose acetals, generally by transacetalation reactions. [Pg.33]

A wide variety of /3-lactams are available by these routes because of the range of substituents possible in either the ketene or its equivalent substituted acetic acid derivative. Considerable diversity in imine structure is also possible. In addition to simple Schiff bases, imino esters and thioethers, amidines, cyclic imines and conjugated imines such as cinnamy-lidineaniline have found wide application in the synthesis of functionalized /3-lactams. A-Acylhydrazones can be used, but phenylhydrazones and O-alkyloximes do not give /3-lactams. These /3-lactam forming reactions give both cis and /raMS-azetidin-2-ones some control over stereochemistry can, however, be exercised by choice of reactants and conditions. [Pg.260]

The oxidation of amines by mercuric acetate is an old reaction (54) which up until recent years was employed primarily to modify alkaloid structures (55). A systemic study of the oxidizing action of mercuric acetate by Leonard and co-workers led to the development of a general method for the synthesis of enamines from cyclic tertiary amines. An observation made after a large number of compounds were oxidized, but which is worth noting at the onset, is that a tertiary hydrogen alpha to the nitrogen atom is removed preferentially to a secondary a-hydrogen. [Pg.68]

The most general method for synthesis of cyclic enamines is the oxidation of tertiary amines with mercuric acetate, which has been investigated primarily by Leonard 111-116) and applied in numerous examples of structural investigation and in syntheses of alkaloids 102,117-121). The requirement of a tram-coplanar arrangement of an a proton and mercury complexed on nitrogen, in the optimum transition state, confers valuable selectivity to the reaction. It may thus be used as a kinetic probe for stereochemistry as well as for the formation of specific enamine isomers. [Pg.325]

The formation of an enamine from an a,a-disubstituted cyclopentanone and its reaction with methyl acrylate was used in a synthesis of clovene (JOS). In a synthetic route to aspidospermine, a cyclic enamine reacted with methyl acrylate to form an imonium salt, which regenerated a new cyclic enamine and allowed a subsequent internal enamine acylation reaction (309,310). The required cyclic enamine could not be obtained in this instance by base isomerization of the allylic amine precursor, but was obtained by mercuric acetate oxidation of its reduction product. Condensation of a dihydronaphthalene carboxylic ester with an enamine has also been reported (311). [Pg.362]

Olefins are also the products of hydroboratlon of enamines, followed by treatment of the organoborane products with hot acid (543,544). The reduction of enamines with sodium borohydride and acetic acid (545) and the selective reduction of dienamines with sodium borohydride to give homo-allylic tertiary amines (138-140,225,546,547), has been applied to the synthesis of conessine (548) and other aminosteroid analogs (545,549-552). Further examples of the reduction of imonium salts by sodium borohydride can be found in the reduction of Bischler-Napieralski products, and other cyclic imonium salts (102). [Pg.429]

Synthesis of chiral cyclic N,0-acetals of glyoxal useful for preparation of a-amino acids 98SL449. [Pg.214]


See other pages where Cyclic acetals, synthesis is mentioned: [Pg.211]    [Pg.1198]    [Pg.1198]    [Pg.50]    [Pg.120]    [Pg.1103]    [Pg.311]    [Pg.330]    [Pg.545]    [Pg.724]    [Pg.257]    [Pg.893]    [Pg.4]    [Pg.724]    [Pg.248]    [Pg.320]    [Pg.66]    [Pg.90]    [Pg.290]    [Pg.390]    [Pg.458]    [Pg.776]    [Pg.631]   
See also in sourсe #XX -- [ Pg.410 , Pg.411 ]




SEARCH



Acetals cyclic

Acetals, synthesis

Acetic synthesis

Cyclic acetalization

Cyclic synthesis

Synthesis acetate

© 2024 chempedia.info