Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetal hydroperoxides

Copolymers of ethylene (E) or propylene (P) with acrylic acid (AA) or methacrylic acid (MA) were obtained from SP2 (USA) and used as received (EAA, PAA, PEAA, PMA). Copolymers of ethylene and vinyl alcohol (EVOH) were prepared by hydrolysis (NaOH 0,5M in methanol, reflux, 48 h), of commercial ethylene-vinyl acetate copolymers (EVA, Elf-Atochem) containing 5, 9, 14, and 18 w% of acetate. Hydroperoxides of EPDM based on 5-ethylidene-2-norbornene (0.7 mol Kg 1, Exxon) and polyoctenamer (Vestenamer, VEST, Hiils) resulted from a reaction of polymer films with singlet oxygen. [Pg.21]

Acetals are also readily autoxidized and crystalline acetal hydroperoxides can be isolated in the case of benzaldehyde ethylene acetal and its derivatives.335 Autoxidation of ketones leads to aldehydes and acids by way of the usually unstable ketone hydroperoxides.336,337 In the steroid series oxygen and potassium terf-butoxide in tert-butyl alcohol give 17-hydroperoxides,337 which can be degraded to the 17-keto steroids 338 in this way androstenolone is obtained from pregnenolone by way of the corresponding hydroperoxide (cf. Sucrow339) ... [Pg.310]

In contrast to oxidation in water, it has been found that 1-alkenes are directly oxidized with molecular oxygen in anhydrous, aprotic solvents, when a catalyst system of PdCl2(MeCN)2 and CuCl is used together with HMPA. In the absence of HMPA, no reaction takes place(100]. In the oxidation of 1-decene, the Oj uptake correlates with the amount of 2-decanone formed, and up to 0.5 mol of O2 is consumed for the production of 1 mol of the ketone. This result shows that both O atoms of molecular oxygen are incorporated into the product, and a bimetallic Pd(II) hydroperoxide coupled with a Cu salt is involved in oxidation of this type, and that the well known redox catalysis of PdXi and CuX is not always operalive[10 ]. The oxidation under anhydrous conditions is unique in terms of the regioselective formation of aldehyde 59 from X-allyl-A -methylbenzamide (58), whereas the use of aqueous DME results in the predominant formation of the methyl ketone 60. Similar results are obtained with allylic acetates and allylic carbonates[102]. The complete reversal of the regioselectivity in PdCli-catalyzed oxidation of alkenes is remarkable. [Pg.30]

Properly end-capped acetal resins, substantially free of ionic impurities, are relatively thermally stable. However, the methylene groups in the polymer backbone are sites for peroxidation or hydroperoxidation reactions which ultimately lead to scission and depolymerisation. Thus antioxidants (qv), especially hindered phenols, are included in most commercially available acetal resins for optimal thermal oxidative stabiUty. [Pg.57]

Until World War 1 acetone was manufactured commercially by the dry distillation of calcium acetate from lime and pyroligneous acid (wood distillate) (9). During the war processes for acetic acid from acetylene and by fermentation supplanted the pyroligneous acid (10). In turn these methods were displaced by the process developed for the bacterial fermentation of carbohydrates (cornstarch and molasses) to acetone and alcohols (11). At one time Pubhcker Industries, Commercial Solvents, and National Distillers had combined biofermentation capacity of 22,700 metric tons of acetone per year. Biofermentation became noncompetitive around 1960 because of the economics of scale of the isopropyl alcohol dehydrogenation and cumene hydroperoxide processes. [Pg.94]

Usually, organoboranes are sensitive to oxygen. Simple trialkylboranes are spontaneously flammable in contact with air. Nevertheless, under carefully controlled conditions the reaction of organoboranes with oxygen can be used for the preparation of alcohols or alkyl hydroperoxides (228,229). Aldehydes are produced by oxidation of primary alkylboranes with pyridinium chi orochrom ate (188). Chromic acid at pH < 3 transforms secondary alkyl and cycloalkylboranes into ketones pyridinium chi orochrom ate can also be used (230,231). A convenient procedure for the direct conversion of terminal alkenes into carboxyUc acids employs hydroboration with dibromoborane—dimethyl sulfide and oxidation of the intermediate alkyldibromoborane with chromium trioxide in 90% aqueous acetic acid (232,233). [Pg.315]

Hydroperoxides have been obtained from the autoxidation of alkanes, aralkanes, alkenes, ketones, enols, hydrazones, aromatic amines, amides, ethers, acetals, alcohols, and organomineral compounds, eg, Grignard reagents (10,45). In autoxidations involving hydrazones, double-bond migration occurs with the formation of hydroperoxy—azo compounds via free-radical chain processes (10,59) (eq. 20). [Pg.105]

With mercuric acetate (Hg(OOCCH2)2), olefins and / fZ-butyl hydroperoxide form organomercury-containing peroxides (66,100). The organomercury compound can be treated with bromine or a mild reducing agent, such as sodium borohydride, to remove the mercury. [Pg.109]

Limonene (15) can be isomerized to terpiaolene (39) usiag Hquid SO2 and a hydroperoxide catalyst (/-butyl hydroperoxide (TBHP)) (76). Another method uses a specially prepared orthotitanic acid catalyst with a buffer such as sodium acetate (77). A selectivity of about 70% is claimed at about 50% conversion when mn at 150°C for four hours. [Pg.415]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]

Homogeneous Oxidation Catalysts. Cobalt(II) carboxylates, such as the oleate, acetate, and naphthenate, are used in the Hquid-phase oxidations of -xylene to terephthaUc acid, cyclohexane to adipic acid, acetaldehyde (qv) to acetic acid, and cumene (qv) to cumene hydroperoxide. These reactions each involve a free-radical mechanism that for the cyclohexane oxidation can be written as... [Pg.381]

Oxidation catalysts are either metals that chemisorb oxygen readily, such as platinum or silver, or transition metal oxides that are able to give and take oxygen by reason of their having several possible oxidation states. Ethylene oxide is formed with silver, ammonia is oxidized with platinum, and silver or copper in the form of metal screens catalyze the oxidation of methanol to formaldehyde. Cobalt catalysis is used in the following oxidations butane to acetic acid and to butyl-hydroperoxide, cyclohexane to cyclohexylperoxide, acetaldehyde to acetic acid and toluene to benzoic acid. PdCh-CuCb is used for many liquid-phase oxidations and V9O5 combinations for many vapor-phase oxidations. [Pg.2095]

The gas approximates plug flow except in wide columns, but the liqiiid undergoes considerable oa mixiug. The latter effect can be reduced with packing or perforated plates. The effect on selectivity may become important. In the oxidation of hquid /i-butane, for instance, the ratio of methyl ethyl ketone to acetic acid is much higher in plug flow than in mixed. Similarly, in the air oxidation of isobutane to tei t-huty hydroperoxide, where te/ t-butanol also is obtained, plug flow is more desirable. [Pg.2115]

The intermediate hydroperoxide is sufficiently stable to be isolated, and reduction with any one of a number of reagents (zinc-acetic acid is preferred) then gives the 17a-hydroxy-20-keto compound. [Pg.198]

Dione 21-Acetate To a stirred solution of 500 mg of 9o-fluoro-11(3,21-dihydroxy-16-methyl-1,4,16-pregnatriene-3,20-dione 21-acetate in 5 ml of benzene and 5 ml of chloroform are added 0.50 ml of t-butyl hydroperoxide and 0.1 ml of a 35% methanolic solution of benzyl-trimethyl ammonium hydroxide. After 18 hours at room temperature, water is added and the mixture thoroughly extracted with chloroform. The chloroform extract is washed with saturated aqueous sodium chloride and dried over magnesium sulfate. Evaporation of the Solvent and crystallization of the residue from acetone-ether gives Bo-fluoro-... [Pg.684]

Figure 16.6 MECHANISM Mechanism of the electrophilic hydroxylation of p-hydroxyphenyl acetate, by reaction with FAD hydroperoxide. The hydroxyiating species is an "0H+ equivalent that arises by protonation of FAD hydroperoxide, RO-OH + H+ — ROH -+ 0H+. Figure 16.6 MECHANISM Mechanism of the electrophilic hydroxylation of p-hydroxyphenyl acetate, by reaction with FAD hydroperoxide. The hydroxyiating species is an "0H+ equivalent that arises by protonation of FAD hydroperoxide, RO-OH + H+ — ROH -+ 0H+.
The great utility of hydrogen peroxide as a reagent for the conversion of sulphoxides to sulphones spurred the investigation of other peroxy-containing compounds. Probably the most commonly used species is peracetic acid which is formed by the reaction of acetic acid with hydrogen peroxide. In addition, other peroxy acids such as pertrifluoroacetic acid and m-chloroperbenzoic acid and hydroperoxides and hydrotrioxides are often used to convert sulphoxides to sulphones. [Pg.973]

In a related reaction, primary aromatic amines have been oxidized to azo compounds by a variety of oxidizing agents, among them Mn02, lead tetraacetate, O2 and a base, barium permanganate, and sodium perborate in acetic acid, tert Butyl hydroperoxide has been used to oxidize certain primary amines to azoxy compounds. [Pg.1519]

Cobaltic acetate oxidises /er/-butyl hydroperoxide to a mixture of /err-butanol, di- er/-butyl peroxide and oxygen with essentially second-order kinetics . The reaction does not involve 0-0 fission, the mechanism suggested being... [Pg.378]

The cobaltous acetate reduction of tert-butyl hydroperoxide in acetic acid yields mainly ter/-butanol and oxygen the metal ion stays in the +2 oxidation state because of the reactivity of Co(III) towards hydroperoxides (p. 378) °. The rate law is... [Pg.465]


See other pages where Acetal hydroperoxides is mentioned: [Pg.87]    [Pg.87]    [Pg.477]    [Pg.103]    [Pg.112]    [Pg.352]    [Pg.464]    [Pg.102]    [Pg.168]    [Pg.166]    [Pg.118]    [Pg.1619]    [Pg.538]    [Pg.677]    [Pg.594]    [Pg.977]    [Pg.795]    [Pg.916]    [Pg.997]    [Pg.478]    [Pg.243]    [Pg.344]    [Pg.183]   
See also in sourсe #XX -- [ Pg.310 ]




SEARCH



© 2024 chempedia.info