Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Accessory olfactory bulb system

Dudley C.A. and Moss R.L. (1994). Lesions of the accessory olfactory bulb decrease lordotic responsiveness and reduce mating-induced c-fos expression in the accessory olfactory system. Brain Res 642, 29-37. [Pg.201]

Kumar A., Dudley C. and Moss R. (1999). Functional dichotomy within the vomeronasal system distinct zones of neuronal activity in the accessory olfactory bulb correlate with sex-specific behaviors. J Neurosci 19, 1-6. [Pg.222]

Raisman G. (1972). An experimental study of the projection of the amygdala to the accessory olfactory bulb and its relationship to the concept of a dual olfactory system. Exp Brain Res 14, 395-404. [Pg.239]

Reger R.L., Gerall A.A., et al. (1987). LHRH neuronal system in the accessory olfactory bulb of the prairie vole, Microtus ochrogaster. Neurosci Abs 13, 993. [Pg.240]

Shapiro L. and Halpem M. (1995). Lectin histochemical identification of carbohydrate moieties in opossum chemosensory systems during development, with special emphasis on VVA-identified subdivisions in the accessory olfactory bulb. J Morphol 224, 331-349. [Pg.246]

By contrast, the accessory olfactory system is thought to be involved in the detection of odors that influence a variety of reproductive and aggressive behaviors (Keverne 1999). Sensory neurons are located in the vomeronasal organ (VNO) and detect pheromones which gain access to the VNO by a pumping mechanism (Meredith and O Connell, 1979). VNO neurons send projections to the accessory olfactory bulb (AOB). Mitral cells of the AOB project in turn to the medial nucleus of the amygdala olfactory information is then dispatched to several hypothalamic regions such as the bed nucleus of the stria terminalis, the medial preoptic area and the ventromedial hypothalamus (Scalia and Winans 1975). [Pg.242]

As with many macrosmatic mammals, rodents have two separate chemosensory systems, the main olfactory system (MOS) and accessory olfactory system (AOS), which respond to social odors. Importantly, these sensory systems differ not only in their peripheral morphology and central projections, but also in the types of chemosignals that they process (Meredith 1991). Sensory neurons of the MOS, which are located in the main olfactory epithelium and project to the main olfactory bulbs, process volatile chemicals and can detect odors at a distance. In contrast, sensory neurons of the AOS, which are located in the vomeronasal organs (VNO) and project to the accessory olfactory bulbs, primarily process large, non-volatile chemicals and require contact for stimulation (Meredith 1991). [Pg.257]

The vomeronasal system, also known as the accessory olfactory system, consists of chemoreceptors, organized into the VNO, the vomeronasal nerve, its terminal, the accessory olfactory bulb, and more central pathways. First described by Jacobson in 1811, the VNO has been studied intensely. We now know how stimuli reach it and what behaviors it mediates. The VNO occurs in amphibians, reptiles, and mammals. Among mammals, it is best developed in marsupials and monotremes. In birds it only appears during embryogenesis. The VNO and its function are best known for squamate reptiles, particularly snakes, and rodents and ungulates among the mammals. [Pg.96]

Hatanaka, T. and Hanada, T. (1987). Structure of the vomeronasal system and the induced wave in the accessory olfactory bulb of red eared turtle. Chemical Senses 12,521. [Pg.468]

Figure 7 Schematic diagram demonstrating the connection system between the nasal odor receptors and the (main) olfactory bulb. Sensory neurons expressing identical odorant receptors converge their axons to a limited number of defined glomeruli. AOB, accessory olfactory bulb NC, neocortex. Reproduced from K. Mori H. Nagao Y. Yoshihara, Science 1999, 286, 711-715, with permission from AAAS. Figure 7 Schematic diagram demonstrating the connection system between the nasal odor receptors and the (main) olfactory bulb. Sensory neurons expressing identical odorant receptors converge their axons to a limited number of defined glomeruli. AOB, accessory olfactory bulb NC, neocortex. Reproduced from K. Mori H. Nagao Y. Yoshihara, Science 1999, 286, 711-715, with permission from AAAS.
Fig. 3 Vomeronasal system. Schematic representation of a rodent nasal cavity and brain (lateral view). Accessory olfactory bulb (AOB) mitral cells project to vomeronasal and extended amygdala. Inset The VNO is a bilateral tubular structure located at the base of the nasal septum. VSNs that express the same V1R or V2R converge on a small number of glomeruli in the AOB. Sensory neurons located in the apical layer of the epithelium project to the anterior part of the AOB, whereas those present in the basal layer project to the posterior part. MOE main olfactory epithelium, MOB main olfactory bulb, BSTMPM posteromedial bed nucleus of the stria terminalis, MEA medial amygdaloid nucleus, BACfF bed nucleus of the accessory olfactory tract, PMCO posteromedial cortical amygdaloid area... Fig. 3 Vomeronasal system. Schematic representation of a rodent nasal cavity and brain (lateral view). Accessory olfactory bulb (AOB) mitral cells project to vomeronasal and extended amygdala. Inset The VNO is a bilateral tubular structure located at the base of the nasal septum. VSNs that express the same V1R or V2R converge on a small number of glomeruli in the AOB. Sensory neurons located in the apical layer of the epithelium project to the anterior part of the AOB, whereas those present in the basal layer project to the posterior part. MOE main olfactory epithelium, MOB main olfactory bulb, BSTMPM posteromedial bed nucleus of the stria terminalis, MEA medial amygdaloid nucleus, BACfF bed nucleus of the accessory olfactory tract, PMCO posteromedial cortical amygdaloid area...
Fig. 20. Olfactory epithelium projections to the MOB. Photomicrographs of sagittal sections through the olfactory bulb In sections stained for Nissl (A) or with WGA HRP after injection of the tracer in the olfactory epithelium (B). Note that most of the olfactory bulb is comprised by the main olfactory system while a small portion of the dorsocaudal bulb is occupied by the accessory olfactory bulb in the rat. Note also in B that the WGA HRP did not transport to the glomeruli of AOB since the tracer did not gain access to the vomeronasal organ that is embedded in the nasal septum. Bar in B, 1 mm. Fig. 20. Olfactory epithelium projections to the MOB. Photomicrographs of sagittal sections through the olfactory bulb In sections stained for Nissl (A) or with WGA HRP after injection of the tracer in the olfactory epithelium (B). Note that most of the olfactory bulb is comprised by the main olfactory system while a small portion of the dorsocaudal bulb is occupied by the accessory olfactory bulb in the rat. Note also in B that the WGA HRP did not transport to the glomeruli of AOB since the tracer did not gain access to the vomeronasal organ that is embedded in the nasal septum. Bar in B, 1 mm.
Figure 2. Schematic diagram of the nasal cavities and forebrain of a salamander, illustrating the central projections of the olfactory and vomeronasal systems in dorsal view. Anterior is toward the top of the figure, and only ipsilateral projections are shown. The medial (A) and lateral (B) olfactory tracts arise from the olfactory bulb. (C) The extra-bulbar ol ctory pathway bypasses the olfactory bulb and projects directly to the anterior preoptic area. (D) The accessory olfactory bulb, which receives input from the vomeronasal organ, projects to the lateral amygdala (la). Other abbreviations apoa = anterior preoptic area dp = dorsal pallium Ip = lateral pallium mp = medial pallium ma = medial amygdala s = septum sir = striatum. Based on descriptions in Hetrick, 1927,1933,1948 Kokoros and Northcutt, 1977 and Schmidt and Roth, 1990. Figure 2. Schematic diagram of the nasal cavities and forebrain of a salamander, illustrating the central projections of the olfactory and vomeronasal systems in dorsal view. Anterior is toward the top of the figure, and only ipsilateral projections are shown. The medial (A) and lateral (B) olfactory tracts arise from the olfactory bulb. (C) The extra-bulbar ol ctory pathway bypasses the olfactory bulb and projects directly to the anterior preoptic area. (D) The accessory olfactory bulb, which receives input from the vomeronasal organ, projects to the lateral amygdala (la). Other abbreviations apoa = anterior preoptic area dp = dorsal pallium Ip = lateral pallium mp = medial pallium ma = medial amygdala s = septum sir = striatum. Based on descriptions in Hetrick, 1927,1933,1948 Kokoros and Northcutt, 1977 and Schmidt and Roth, 1990.
The peripheral organ for the olfactory system is the olfactory sensory epithelium, located in the dorsal-posterior portion of the nasal cavity. This epithelium, composed of several different types of cells, contains bipolar neurons (also known as olfactory receptor cells) whose axons extend to the brain and terminate in the main olfactory bulb. The VN organ is also situated in the periphery, and similarly contains several different types of cells, the most numerous being bipolar neurons whose axons terminate in the accessory olfactory bulb. The VN organ opens into the roof of the mouth via a very narrow channel, the VN duct. In snakes the tongue delivers odorants to the opening of the VN duct and, by a mechanism at present not understood, these odorants reach the dendritic tips of the bipolar neurons (Halpern and Kubie, 1980). [Pg.242]

The two components of the VN system examined in the present study are the vomeronasal organ and the accessory olfactory bulb. The VNO is a paired, chemoreceptive structure present at the base of the nasal septum in most terrestrial mammals, amphibians and reptiles. The VNO s bipolar receptor neurons detect pheromonal signals (Halpem, 1987 Farbman, 1992). [Pg.284]


See other pages where Accessory olfactory bulb system is mentioned: [Pg.277]    [Pg.281]    [Pg.134]    [Pg.142]    [Pg.233]    [Pg.368]    [Pg.369]    [Pg.97]    [Pg.103]    [Pg.223]    [Pg.196]    [Pg.178]    [Pg.228]    [Pg.17]    [Pg.54]    [Pg.139]    [Pg.170]    [Pg.473]    [Pg.120]    [Pg.204]    [Pg.217]    [Pg.257]    [Pg.278]    [Pg.283]    [Pg.292]    [Pg.318]    [Pg.517]    [Pg.519]    [Pg.539]   
See also in sourсe #XX -- [ Pg.242 , Pg.243 , Pg.244 , Pg.245 , Pg.246 , Pg.247 , Pg.248 , Pg.249 , Pg.250 , Pg.251 , Pg.252 , Pg.253 ]




SEARCH



Accessories

Accessory olfactory bulb

Accessory olfactory system

Bulbs

Olfactory

Olfactory bulbs

© 2024 chempedia.info