Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Accelerators electrostatic, sample

In this mode, ions are formed continuously in the ion source (a), but the electrostatic accelerating potential is applied in pulses (b). Thus, a sample of ions is drawn into the drift region (c) with more ions formed in the source. As shown in Figure 26.1, the ions separate according to m/z values (d) and arrive at the detector (e), the ions of largest m/z arriving last. [Pg.194]

The basic principle of e-beam SNMS as introduced by Lipinsky et al. in 1985 [3.60] is simple (Fig. 3.30) - as in SIMS, the sample is sputtered with a focused keV ion beam. SN post-ionization is accomplished by use of an e-beam accelerated between a filament and an anode. The applied electron energy Fe a 50 20 eV is higher than the range of first ionization potentials (IP) of the elements (4—24 eV, see Fig. 3.31). Typical probabilities of ionization are in the 0.01% range. SD and residual gas suppression is achieved with electrostatic lenses before SN post-ionization and energy filtering, respectively. [Pg.123]

The mass separated, pulsed, and focused primary ions with the energy of 1 -25 keV, typically liquid metal ions such as Ga, Cs, and O", are used to bombard the sample surface, causing the secondary elemental or cluster ions to emit from the surface. The secondary ions are then electrostatically accelerated into a field-free drift region with a nominal kinetic energy of ... [Pg.32]

Sample Preparation for Electrostatic Accelerator Dating of Radiocarbon... [Pg.95]

Graphite produces the large beam currents desirable in electrostatic accelerator dating of radiocarbon. However, samples to be dated can be converted to other forms of carbon with less effort, and still provide satisfactory results. [Pg.95]

All carbon samples could easily be oxidized to C02, a form of the sample greatly preferred by most users, for many reasons. Neither the on-line or dedicated electrostatic accelerators under construction have succeeded in overcoming the problem of too much memory of C02 gas. Consequently, the sample presented to the cesium sputter beam source will probably have to be a solid. The cesium sputter source is the most likely to be used because it can produce negative ions of carbon in microampere beams. [Pg.96]

Rubin, M., Sample Preparation for Electrostatic Accelerator Dating of Radiocarbon, Chapter 5 in this book. [Pg.189]

The most widely used method for ionization is electron impact (El). In an El source the sample is placed in the path of an electron beam. Although many newer kinds of ion sources have been developed, El is the method commonly used in classical isotope-ratio mass spectrometers (IRMS), i.e. mass spectrometers designed for precise isotopic analysis. In this type of spectrometer the ions, once formed, are electrostatically accelerated, and then ejected through a slit into a magnetic field held perpendicular to the ion trajectory. In the magnetic sector part of the instrument the particles are deflected in an arc described by ... [Pg.215]

Figure 16.6—Linear time of flight (TOF) and principle of the reflectron. 1) Sample and sample holder 2) MALDI ionisation device 3 and 3 ) extraction and acceleration grid (5 000 V potential drop) 4) control grid 5) multichannel collector plate 6) electron multiplier 7) signal output. The bottom figure shows a reflectron, which is essentially an electrostatic mirror that is used to time-focus ions of the same mass, but which have different initial energies. This device increases resolution, which can attain several thousand. Figure 16.6—Linear time of flight (TOF) and principle of the reflectron. 1) Sample and sample holder 2) MALDI ionisation device 3 and 3 ) extraction and acceleration grid (5 000 V potential drop) 4) control grid 5) multichannel collector plate 6) electron multiplier 7) signal output. The bottom figure shows a reflectron, which is essentially an electrostatic mirror that is used to time-focus ions of the same mass, but which have different initial energies. This device increases resolution, which can attain several thousand.
Electrons from the heated tungsten filament are accelerated to the annular anode. Depending on the anticathode material a characteristic fluorescence radiation is emitted, passes through a thin Aluminum window and induces photoelectrons on the surface of the analytical sample. These photoelectrons are deflected in the spherical electrostatic analyzer, double focussed to eliminate stray electrons and finally counted by the electron multiplier. The whole system works under a vacuum of 10-s to 10 7 torr or even 10 10 torr, if surface properties have to be studied. This vacuum is generated by a Titanium... [Pg.6]

The PIMMS-elements can be divided in the fields of fluidic, plasma physics, electrostatic, and high frequency technology. The fluidic part covers the supply with plasma and sample gas, their distribution inside, and their evacuation out of the system. By means of plasma physics both the ionization of the plasma gas by the microwave field and the ionization of the sample gas by impact ionization are described. Electrostatic theory governs to design the elements for acceleration, focusing, and deflection of the plasma electrons and the sample gas ions. Electromagnetic wave theory describes the creation of a microwave-field inside the plasma chamber. [Pg.430]

The electron source of the PIMMS is an argon plasma. Inside the plasma chamber the gas is ionized by a 2.45 GHz microwave field, ignited by an electric spark. In the plasma chamber free electrons are created, that are accelerated by a static electric field for impact ionization of the sample gas atoms. The layout of the plasma chamber has to incorporate both the fluidic and the electrostatic requirements. On the one hand the gas apertures of the chamber must have the appropriate dimensions to assure that the gas flow out of the chamber is low. On the other hand the geometry must be such that most of the electrons are generated close to the outlet of the chamber and can be extracted through this small aperture. Electrons should be generated close to the acceleration field, which intrudes the chamber only to a small depth. [Pg.430]


See other pages where Accelerators electrostatic, sample is mentioned: [Pg.162]    [Pg.528]    [Pg.382]    [Pg.490]    [Pg.610]    [Pg.72]    [Pg.89]    [Pg.94]    [Pg.43]    [Pg.211]    [Pg.239]    [Pg.463]    [Pg.214]    [Pg.217]    [Pg.52]    [Pg.85]    [Pg.95]    [Pg.222]    [Pg.428]    [Pg.382]    [Pg.509]    [Pg.272]    [Pg.187]    [Pg.382]    [Pg.522]    [Pg.277]    [Pg.451]    [Pg.59]    [Pg.428]    [Pg.262]    [Pg.279]    [Pg.88]    [Pg.161]    [Pg.198]    [Pg.244]    [Pg.418]    [Pg.420]   


SEARCH



Electrostatic acceleration

© 2024 chempedia.info