Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A Coherence

Shearography monitors the speckular 2D interference pattern of an unpolished surface illuminated by a coherent light source, and is therefore a metliod that lends itself to the testing of industrial materials. Small surface, or near-surface defects may produce localised strain on... [Pg.678]

This section has focused mainly on the internal dynamics of small molecules, where a coherent picture of the detailed mtemal motion has been emerging from intense efforts of many theoretical and experimental workers. A natural question is whether these kinds of issues will be important m the dynamics of larger molecules, and whether their investigation at the same level of detail will be profitable or tractable. [Pg.78]

A1.6 Interaction of light with matter a coherent perspective... [Pg.218]

Much of the previous section dealt with two-level systems. Real molecules, however, are not two-level systems for many purposes there are only two electronic states that participate, but each of these electronic states has many states corresponding to different quantum levels for vibration and rotation. A coherent femtosecond pulse has a bandwidth which may span many vibrational levels when the pulse impinges on the molecule it excites a coherent superposition of all tliese vibrational states—a vibrational wavepacket. In this section we deal with excitation by one or two femtosecond optical pulses, as well as continuous wave excitation in section A 1.6.4 we will use the concepts developed here to understand nonlinear molecular electronic spectroscopy. [Pg.235]

An alternative perspective is as follows. A 5-frmction pulse in time has an infinitely broad frequency range. Thus, the pulse promotes transitions to all the excited-state vibrational eigenstates having good overlap (Franck-Condon factors) with the initial vibrational state. The pulse, by virtue of its coherence, in fact prepares a coherent superposition of all these excited-state vibrational eigenstates. From the earlier sections, we know that each of these eigenstates evolves with a different time-dependent phase factor, leading to coherent spatial translation of the wavepacket. [Pg.238]

Marquardt R and Quack M 1989 Molecular motion under the Influence of a coherent Infrared-laser field infrared Phys. 29 485-501... [Pg.1091]

Unlike the typical laser source, the zero-point blackbody field is spectrally white , providing all colours, CO2, that seek out all co - CO2 = coj resonances available in a given sample. Thus all possible Raman lines can be seen with a single incident source at tOp Such multiplex capability is now found in the Class II spectroscopies where broadband excitation is obtained either by using modeless lasers, or a femtosecond pulse, which on first principles must be spectrally broad [32]. Another distinction between a coherent laser source and the blackbody radiation is that the zero-point field is spatially isotropic. By perfonuing the simple wavevector algebra for SR, we find that the scattered radiation is isotropic as well. This concept of spatial incoherence will be used to explain a certain stimulated Raman scattering event in a subsequent section. [Pg.1197]

A microwave pulse from a tunable oscillator is injected into the cavity by an anteima, and creates a coherent superposition of rotational states. In the absence of collisions, this superposition emits a free-mduction decay signal, which is detected with an anteima-coupled microwave mixer similar to those used in molecular astrophysics. The data are collected in the time domain and Fourier transfomied to yield the spectrum whose bandwidth is detemimed by the quality factor of the cavity. Hence, such instruments are called Fourier transfomi microwave (FTMW) spectrometers (or Flygare-Balle spectrometers, after the inventors). FTMW instruments are extraordinarily sensitive, and can be used to examine a wide range of stable molecules as well as highly transient or reactive species such as hydrogen-bonded or refractory clusters [29, 30]. [Pg.1244]

Also, rotational state resolution of cross-sections can be obtained by employing a coherent state analysis [51] for the situation of weak coupling between rotational and vibrational degrees of freedom. A suitable rotational coherent state can be expressed as... [Pg.244]

Solution Properties. Typically, if a polymer is soluble ia a solvent, it is soluble ia all proportions. As solvent evaporates from the solution, no phase separation or precipitation occurs. The solution viscosity iacreases continually until a coherent film is formed. The film is held together by molecular entanglements and secondary bonding forces. The solubiUty of the acrylate polymers is affected by the nature of the side group. Polymers that contain short side chaias are relatively polar and are soluble ia polar solvents such as ketones, esters, or ether alcohols. As the side chaia iacreases ia length the polymers are less polar and dissolve ia relatively nonpolar solvents, such as aromatic or aUphatic hydrocarbons. [Pg.164]

Consolidation. Metal powders are consoHdated by heat or by pressure followed by heat, or by heating during the appHcation of pressure (17). ConsoHdation produces a coherent mass of definitive size and shape for further working, heat treating, or use as is. [Pg.182]

Chemical modification of the wax can improve smear resistance (5). Sihcones, which do not harm furniture finishes (6), are incorporated as film-forming ingredients in furniture pohshes. The lubricant properties of sihcones improve ease of apphcation of the pohsh and removal of insoluble soil particles. In addition, sihcones make dry films easier to buff and more water-repeUent, and provide depth of gloss, ie, abihty to reflect a coherent image as a result of a high refractive index (7). Wax-free pohshes, which have sihcones as the only film former, can be formulated to dehver smear resistance (8). Another type of film former commonly used in oil-base furniture pohshes is a mineral or vegetable oil, eg, linseed oil. [Pg.209]

Properties. SUica gel (see Eig. 8) is a coherent, rigid, continuous three-dimensional network of spherical particles of coUoidal sUica. Both sUoxane, —Si—O—Si—, and sUanol, —Si—O—H, bonds are present in the gel stmcture. The pores are intercoimected and fUled with water and/or alcohol from the hydrolysis and condensation reactions (40). A hydrogel is a gel in which the pores are filled with water. A xerogel is a gel from which the hquid medium... [Pg.490]

Sintering is a thermal process through which a loose mass of particles is transformed to a coherent body. It usually takes place at a temperature equal to two-thirds the melting point, or ca 800—1000°C for nickel. The sintered nickel stmcture without active material is called a plaque and it can be prepared by either dry or wet processes (see Metallurgy, powder). [Pg.548]

The physical stmcture of mixed-layer minerals is open to question. In the traditional view, the MacEwan crystallite is a combination of 1.0 nm (10 E) non-expandable units (iUite) that forms as an epitaxial growth on 1.7 nm expandable units (smectite) that yield a coherent diffraction pattern (37). This view is challenged by the fundamental particle hypothesis which is based on the existence of fundamental particles of different thickness (160—162). [Pg.200]


See other pages where A Coherence is mentioned: [Pg.87]    [Pg.178]    [Pg.235]    [Pg.1062]    [Pg.218]    [Pg.227]    [Pg.263]    [Pg.276]    [Pg.1061]    [Pg.1069]    [Pg.1073]    [Pg.1170]    [Pg.1190]    [Pg.1236]    [Pg.1466]    [Pg.1470]    [Pg.1595]    [Pg.1733]    [Pg.1980]    [Pg.1985]    [Pg.2085]    [Pg.2816]    [Pg.104]    [Pg.107]    [Pg.443]    [Pg.444]    [Pg.200]    [Pg.120]    [Pg.47]    [Pg.182]    [Pg.487]    [Pg.210]    [Pg.270]    [Pg.379]    [Pg.316]    [Pg.385]   


SEARCH



Quasi-Coherent Sheaves Over a Diagram of Schemes

© 2024 chempedia.info