Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A bonds addition

There are many ways of presenting a connection table. One is first to label each atom of a molecule arbitrarily and to arrange them in an atom list (Figure 2-20). Then the bond information is stored in a second table with indices of the atoms that are connected by a bond. Additionally, the bond order of the corresponding coimection is stored as an integer code (1 = single bond, 2 = double bond, etc.) in the third column. [Pg.40]

In order to develop a quantitative interpretation of the effects contributing to heats of atomization, we will introduce other schemes that have been advocated for estimating heats of formation and heats of atomization. We will discuss two schemes and illustrate them with the example of alkanes. Laidler [11] modified a bond additivity scheme by using different bond contributions for C-H bonds, depending on whether hydrogen is bonded to a primary (F(C-H)p), secondary ( (C-H)g), or tertiary ( (C-H)t) carbon atom. Thus, in effect, Laidler also used four different kinds of structure elements to estimate heats of formation of alkanes, in agreement with the four different groups used by Benson. [Pg.324]

Finally we describe several methods that combine molecule-dependent empirical parameters with a moderate level ab initio molecular orbital method. The BAC-MP4 method of Melius and coworkers115-118 combines a computationally inexpensive molecular orbital method with a bond additivity correction. This procedure uses a set of accurate experimental data to obtain a correction for bonds of different types that is then used to adjust calculated thermochemical data such as enthalpies of formation. Quite accurate results can be obtained if suitable reference molecules are available and if the errors in the calculation are systematic. The computational methodology is based on an MP4/6-31G(d,p)//HF/6-/31G(d) calculation. A pairwise additive empirical bond correction is derived for different bonds from fitting to experimental enthalpies of formation or in some cases to high quality ab initio computations. In addition, for open-shell molecules an additional correction is needed to compensate for spin contamination of the wavefunction from higher spin states in the unrestricted Hartree-Fock (UHF) method. [Pg.178]

Starch fibrids are produced by spraying alkaline starch dispersion into an agitated, concentrated solution of ammonium sulfate.41,42 Amylose fibers or films are likewise produced by extmsion of a hot paste into a coagulating bath. Starch fibrids (starch pulp) can be utilized as a bonding additive in paper, but its use is rare. [Pg.665]

The nitrene 28 is not produced from the azide precursor, but from heterocycles via photolysis and thermolysis as shown in Sch. 11 [20]. Iminoacyl nitrenes react intramolecularly giving benzimidazoles with good yields (Sch. 11), and, dependending on the precursor used and the reaction conditions, varying amounts of carbodiimides are obtained. The reactivity of the acyl nitrenes is influenced by the substituent connected to the acyl group (see Sch. 10), however all acyl nitrenes are quite reactive and therefore rather unselective. Apart from cycloaddition reactions with Tt-bonds, insertion reactions into a-bonds, additions to lone pair electrons of... [Pg.397]

One of the first —> topological indices introduced by H. Wiener in 1947 as a bond-additive index in which each bond gives a contribution equal to the product of the number of vertices on each side of the bond [Wiener, 1947a, 1947b, 1947c] and called it at the begirining path number. For acyclic graphs, the Wiener index is then calculated as... [Pg.934]

Carbon-carbon it bonds are weaker than a bonds. Addition reactions to alkenes are generally exothermic because one of the bonds broken is weak (the it bond), but both new bonds formed are strong. [Pg.570]

In a bond additivity scheme, a property is related to contributions from each of the bonds in the molecule. For example, the heat of formation of isooctane (2,2,4-trimethyl-pentane), whose structure is shown in Figure 1, would be calculated from its bond units as... [Pg.234]

In 1975 M. Randic proposed a topological index that was designed so that its magnitude parallels selected properties of alkanes, such as the boiling points. The connectivity index is a bond additive quantity. First, the bonds in a molecule... [Pg.3020]

Both tables, the atom and the bond lists, are linked through the atom indices. An alternative coimection table in the form of a redundant CT is shown in Figure 2-21. There, the first two columns give the index of an atom and the corresponding element symbol. The bond list is integrated into a tabular form in which the atoms are defined. Thus, the bond list extends the table behind the first two columns of the atom list. An atom can be bonded to several other atoms the atom with index 1 is connected to the atoms 2, 4, 5, and 6. These can also be written on one line. Then, a given row contains a focused atom in the atom list, followed by the indices of all the atoms to which this atom is bonded. Additionally, the bond orders are inserted directly following the atom in-... [Pg.40]

Once the atoms arc defined, the bonds between them arc specified in a bond block. Each line of this block specifies which two atoms are bonded, the multiplicity of the bond (the bond type entry) and the stereo configuration of the bond (there arc also three additional fields that arc unused in Molfiles and usually set to 0). The indices of the atoms reflect the order of their appearance in the atom block. In the example analyzed, V relates to the first carbon atom (see also Figure 2-24). "2" to the second one, 3" to oxygen atom, etc. Then the two first lines of the bond block of the analyzed file (Figure 2-29) describe the single bond between the two carbon atoms C1-C2 and the double bond C2=0-5, respectively. [Pg.50]

Another scheme for estimating thermocheraical data, introduced by Allen [12], accumulated the deviations from simple bond additivity in the carbon skeleton. To achieve this, he introduced, over and beyond a contribution from a C-C and a C-H bond, a contribution G(CCC) every time a consecutive arrangement of three carbon atoms was met, and a contribution D(CCC) whenever three carbon atoms were bonded to a central carbon atom. Table 7-3 shows the substructures, the symbols, and the contributions to the heats of formation and to the heats of atomization. [Pg.324]

In addition to these basic term s. force fieldsoften h ave cross term s that combine the above interactions. For example there may be a term which causes ati angle bend to interact with a bond stretch term (opening a bond angle may tend to lengthen the bonds in volved). [Pg.174]

About 80% of the vanadium now produced is used as ferrovanadium or as a steel additive. Vanadium foil is used as a bonding agent in cladding htanium to steel. Vanadium pentoxide is used in ceramics and as a catalyst. [Pg.72]

The basic premise for making bromosafrole has been to mix sa-frole with Hydrobromic Acid (a.k.a. hydrogen bromide, HBr). That s it. The HBr does what is called a Markovnikov addition reaction whereby the HBr sees the allyl double bond of safrole and preferentially attaches its hydrogen to the gamma carbon and its bromine to the middle beta carbon (don t ask). [Pg.143]

The introduction of additional alkyl groups mostly involves the formation of a bond between a carbanion and a carbon attached to a suitable leaving group. S,.,2-reactions prevail, although radical mechanisms are also possible, especially if organometallic compounds are involved. Since many carbanions and radicals are easily oxidized by oxygen, working under inert gas is advised, until it has been shown for each specific reaction that air has no harmful effect on yields. [Pg.19]

Both steps m this general mechanism are based on precedent It is called elec trophilic addition because the reaction is triggered by the attack of an acid acting as an electrophile on the rr electrons of the double bond Using the two rr electrons to form a bond to an electrophile generates a carbocation as a reactive intermediate normally this IS the rate determining step... [Pg.236]

Epoxidation of alkenes with peroxy acids is a syn addition to the double bond Substituents that are cis to each other in the alkene remain cis in the epoxide substituents that are trans in the alkene remain trans m the epoxide... [Pg.262]

Overall the reaction leads to addition of two hydroxyl groups to the double bond and IS referred to as hydroxylation Both oxygens of the diol come from osmium tetraox ide via the cyclic osmate ester The reaction of OSO4 with the alkene is a syn addition and the conversion of the cyclic osmate to the diol involves cleavage of the bonds between oxygen and osmium Thus both hydroxyl groups of the diol become attached to the same face of the double bond syn hydroxylation of the alkene is observed... [Pg.635]

For purely alicyclic compounds, the selection process proceeds successively until a decision is reached (a) the maximum number of substituents corresponding to the characteristic group cited earliest in Table 1.7, (b) the maximum number of double and triple bonds considered together, (c) the maximum length of the chain, and (d) the maximum number of double bonds. Additional criteria, if needed for complicated compounds, are given in the lUPAC nomenclature rules. [Pg.18]

Some details of the chain-initiation step have been elucidated. With an oxygen radical-initiator such as the /-butoxyl radical, both double bond addition and hydrogen abstraction are observed. Hydrogen abstraction is observed at the ester alkyl group of methyl acrylate. Double bond addition occurs in both a head-to-head and a head-to-tail manner (80). [Pg.165]

Oligomerization and Polymerization Reactions. One special feature of isocyanates is their propensity to dimerize and trimerize. Aromatic isocyanates, especially, are known to undergo these reactions in the absence of a catalyst. The dimerization product bears a strong dependency on both the reactivity and stmcture of the starting isocyanate. For example, aryl isocyanates dimerize, in the presence of phosphoms-based catalysts, by a crosswise addition to the C=N bond of the NCO group to yield a symmetrical dimer (15). [Pg.450]

Vinylpyridine (23) came into prominence around 1950 as a component of latex. Butadiene and styrene monomers were used with (23) to make a terpolymer that bonded fabric cords to the mbber matrix of automobile tires (25). More recendy, the abiUty of (23) to act as a Michael acceptor has been exploited in a synthesis of 4-dimethylaminopyridine (DMAP) (24) (26). The sequence consists of a Michael addition of (23) to 4-cyanopyridine (15), replacement of the 4-cyano substituent by dimethylamine (taking advantage of the activation of the cyano group by quatemization of the pyridine ring), and base-cataly2ed dequatemization (retro Michael addition). 4-r)imethyl aminopyri dine is one of the most effective acylation catalysts known (27). [Pg.326]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]


See other pages where A bonds addition is mentioned: [Pg.189]    [Pg.90]    [Pg.231]    [Pg.74]    [Pg.276]    [Pg.6]    [Pg.261]    [Pg.160]    [Pg.11]    [Pg.189]    [Pg.90]    [Pg.231]    [Pg.74]    [Pg.276]    [Pg.6]    [Pg.261]    [Pg.160]    [Pg.11]    [Pg.281]    [Pg.298]    [Pg.428]    [Pg.583]    [Pg.385]    [Pg.61]    [Pg.253]    [Pg.367]    [Pg.269]    [Pg.7]    [Pg.154]    [Pg.226]    [Pg.37]    [Pg.559]    [Pg.233]    [Pg.266]    [Pg.321]   
See also in sourсe #XX -- [ Pg.291 , Pg.297 ]




SEARCH



Addition to Polar Multiple Bonds Such as Carbonyl or Cyano

Addition to a Double Bond

Addition to a Double Bond Alkylidene, Imido

Addition to a Triple Bond

Addition to a Triple Bond Alkylidine, Nitrido

Addition, of bromine to a double bond

Double bonds s. a. Addition

Double bonds s. a. Addition Hydrogenation, Migration

Nucleophilic Addition to a Triple Bond

Polycyclization Reactions Involving Addition to a Polar Bond

Thioureas, as hydrogen-bonding additives

Ureas as hydrogen-bonding additives

© 2024 chempedia.info