Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc oxide catalyst for

Kniep BL, et al. Rational design of nanostructured copper-zinc oxide catalysts for the steam reforming of methanol. Angew Chem Int Ed. 2004 43(1) 112 15. [Pg.438]

Whittle DM, et al. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation effect of precipitate ageing on catalyst activity. Phys Chem Chem Phys. 2002 4(23) 5915-20. [Pg.439]

Alkali-Promoted Copper-Zinc Oxide Catalysts for Low... [Pg.295]

Hosseini-Sarvari, M. 2011a. An efficient and eco-friendly nanocrystaUine zinc oxide catalyst for one-pot, three component synthesis of new ferrocenyl aminophosphonic esters under... [Pg.283]

Copper/zinc oxide is the catalyst technology most frequently used for methanol steam reforming. Numerous pubhcations have dealt with this type of catalyst and only a few are cited here. The maximum operating temperature of copper/zinc oxide catalysts for methanol steam reforming is limited to 300 °C. [Pg.71]

Partial oxidation of methanol is less frequently reported in the open literature. Cubeiro et al. investigated the performance of palladium/zinc oxide, palladium/ zirconia and copper/zinc oxide catalysts for partial oxidation of methanol in the temperature range between 230 and 270 °C (194j. Increasing selectivity towards hydrogen and carbon dioxide was achieved with increasing conversion, while selectivity towards steam and carbon monoxide decreased. The palladium/zinc oxide catalyst showed lower selectivity towards carbon monoxide compared with the palladium/zirconia catalyst. However, the lowest carbon monoxide selectivity was determined for the copper/zinc oxide catalyst. [Pg.77]

The development of a methanol fuel processor prototype was described by Hdhlein et al. [556]. The methanol burner dedicated to this system has been described in Section 7.5. Later, a complete methanol reformer was developed by Wiese et al. [154]. It was operated at a S/C ratio of 1.5 and a pressure of 3.8 bar. The feed was evaporated and superheated to 280 °C. The reformer itself consisted of four pairs of concentric stainless steel tubes. In the annular gap between the tubes, steam was condensed at 65 bar and 280 °C for the heat supply, while the inner tube carried the copper/zinc oxide catalyst for steam reforming. The reformer response time to a load change from 40 to 100% was about 25 s, which was mainly attributed to the slow dynamics of the dosing pump. Because the dynamic behaviour of the reformer was too slow for an automotive drive system, which had been the target appUcation of the work, an additional gas storage system was considered. To improve the system dynamics, Peters et al. considered the application of microreactor technology for a subsequent improved fuel processor [569]. [Pg.298]

S. H. Taylor, G. J. Hutchings, and A. A. Mirzaei, Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation, Chemical Communications, no. 15, pp. 1373-1374, 1999. [Pg.77]

A AlI lation. A number of methods are available for preparation of A/-alkyl and A[,A/-dialkyl derivatives of aromatic amines. Passing a mixture of aniline and methanol over a copper—zinc oxide catalyst at 250°C and 101 kPa (1 atm) reportedly gives /V-methylaniline [100-61-8] in 96% yield (1). Heating aniline with methanol under pressure or with excess methanol produces /V, /V-dimethylaniline [121 -69-7] (2,3). [Pg.229]

Lebedev A one-step process for converting ethanol, derived from carbohydrates, to butadiene, using a mixed alumina/zinc oxide catalyst at approximately 400°C ... [Pg.161]

More recently spinning disc reactors have been used by Wilson et alP0) to carry out catalytic reactions using supported zinc triflate catalyst for the rearrangement of a-pinene oxide to yield campholenic aldehyde. The results of this study, presented in Table 20.1, suggest that by using a supported catalyst on a spinning disc reactor it is possible to... [Pg.1130]

Wilson, K., Renson, A. and Clark, J. H. Catalysis Letters 61 (1-2) (1999) 51-55. Novel heterogeneous zinc triflate catalysts for the rearrangement of alpha-pinene oxide. [Pg.1136]

Metals, usually brass but also, for example, a more-expensive stainless steel if a higher tensile strength is needed. The insert metal must be compatible with the plastic material. For example, polyamide absorbs moisture, which leads to the steel rusting copper is a oxidation catalyst for polyolefins zinc, aluminium and brass are not compatible with polyacetals... [Pg.758]

N2. Sulfur containing odorants (mercaptans, disulfides, or commercial odorants) are added for leak detection. Because neither fuel cells nor commercial reformer catalysts are sulfur tolerant, the sulfur must be removed. This is usually accomplished with a zinc oxide sulfur polisher and the possible use of a hydrodesulfurizer, if required. The zinc oxide polisher is able to remove the mercaptans and disulfides. However, some commercial odorants, such as Pennwalf s Pennodorant 1013 or 1063, contain THT (tetrahydrothiophene), more commonly known as thiophane, and require the addition of a hydrodesulfurizer before the zinc oxide catalyst bed. [Pg.213]

Fig. 3. Relation between frequency factors and heats of activation for the hydrogen-deuterium exchange reaction on zinc oxide catalysts (ref. 28a). Fig. 3. Relation between frequency factors and heats of activation for the hydrogen-deuterium exchange reaction on zinc oxide catalysts (ref. 28a).
Eucken (88,89) and Wicke (90) have tried to explain the dehydrogenation and dehydration of isopropyl alcohol by an electron interchange between the alcohol and the zinc oxide alumina catalysts used for these conversions. We shall modify the mechanism proposed by Eucken and Wicke, following the theory of chemisorption. Contrary to these authors, we do not believe that the positions of the zinc and oxygen ions on the surface of the zinc oxide catalysts have any appreciable influence upon... [Pg.250]

FIGURE 12 X-Ray diffraction pattern of a mixed oxide catalyst for methanol synthesis. The peaks marked C are cupric oxide Z, zinc oxide A, y-alumina. [Pg.116]

Quantitative and qualitative changes in chemisorption of the reactants in methanol synthesis occur as a consequence of the chemical and physical interactions of the components of the copper-zinc oxide binary catalysts. Parris and Klier (43) have found that irreversible chemisorption of carbon monoxide is induced in the copper-zinc oxide catalysts, while pure copper chemisorbs CO only reversibly and pure zinc oxide does not chemisorb this gas at all at ambient temperature. The CO chemisorption isotherms are shown in Fig. 12, and the variations of total CO adsorption at saturation and its irreversible portion with the Cu/ZnO ratio are displayed in Fig. 13. The irreversible portion was defined as one which could not be removed by 10 min pumping at 10"6 Torr at room temperature. The weakly adsorbed CO, given by the difference between the total and irreversible CO adsorption, correlated linearly with the amount of irreversibly chemisorbed oxygen, as demonstrated in Fig. 14. The most straightforward interpretation of this correlation is that both irreversible oxygen and reversible CO adsorb on the copper metal surface. The stoichiometry is approximately C0 0 = 1 2, a ratio obtained for pure copper, over the whole compositional range of the... [Pg.268]

Only a few studies of the poisoning of copper/zinc oxide catalysts have been reported (refs. 4-6). Whether copper or zinc is most su.sceptible to attack by sulfur is still a question, Tlte literature findings on the sulfur tolerance of methanol synthesis catalyst are inconsistent with industrial experience. For example, observations from indusirinl production suggest that a... [Pg.492]

Iron-chromium oxide catalysts, reduced with hydrogen-containing in the conversion plants, permit reactions temperatures of 350 to 380°C (high temperature conversion), the carbon monoxide content in the reaction gas is thereby reduced to ca. 3 to 4% by volume. Since, these catalysts are sensitive to impurities, cobalt- and molybdenum-(sulfide)-containing catalysts are used for gas mixtures with high sulfur contents. With copper oxide/zinc oxide catalysts the reaction proceeds at 200 to 250°C (low temperature conversion) and carbon monoxide contents of below 0.3% by volume are attained. This catalyst, in contrast to the iron oxide/chromium oxide high temperature conversion catalyst, is, however, very sensitive to sulfur compounds, which must be present in concentrations of less than 0.1 ppm. [Pg.36]

A comparison, however, of zinc oxide catalysts prepared in different ways, i.e. (A) precipitation of zinc hydroxide from zinc sulfate, (B) dry process commercial zinc oxide, and (C) hydrolysis of zinc isopropoxide in moist air, showed that the mode of preparation had a marked effect on the catalyst action. The percentage of olefin formed at a given temperature varied from 5 to 88 for isopropanol, 10 to 20 for ethanol, 1 to 31.5 for isobutanol, and 2 to 15 for n-propanol and butanol. In general, catalyst A was best for dehydration, and catalyst B for dehydrogenation, except in the case of ethanol where they were about the equal. Catalyst C behaved about the same as B, except in the case of ethanol, in which case it was a better dehydration material. [Pg.66]


See other pages where Zinc oxide catalyst for is mentioned: [Pg.23]    [Pg.76]    [Pg.23]    [Pg.76]    [Pg.165]    [Pg.14]    [Pg.113]    [Pg.202]    [Pg.196]    [Pg.129]    [Pg.1487]    [Pg.445]    [Pg.289]    [Pg.96]    [Pg.18]    [Pg.321]    [Pg.615]    [Pg.88]    [Pg.1411]    [Pg.51]    [Pg.85]    [Pg.134]    [Pg.96]    [Pg.422]   


SEARCH



For zinc oxide

Zinc catalysts

Zinc oxide catalyst

© 2024 chempedia.info