Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zero oxidation state oxides

A general catalytic cycle proposed for Heck reaction is shown in Fig. 7.17. While all the steps in the catalytic cycle have precedents, the proposed reaction mechanism lacks direct evidence. The basic assumption is that under the reaction conditions, the precatalyst is converted to 7.64, a coordinatively unsaturated species with palladium in the zero oxidation state. Oxidative addition of ArX, followed by alkene coordination, leads to the formation of 7.65 and 7.66, respectively. Alkene insertion into the Pd-C bond followed by /3-H abstraction gives 7.67 and 7.68, respectively. Reductive elimination of HX, facilitated by the presence of base B, regenerates 7.64 and completes the catalytic cycle. The C-C coupled product is formed in the 7.67 to 7.68 conversion step. [Pg.163]

Anodic-stripping voltaimnetry (ASV) is used for the analysis of cations in solution, particularly to detemiine trace heavy metals. It involves pre-concentrating the metals at the electrode surface by reducmg the dissolved metal species in the sample to the zero oxidation state, where they tend to fomi amalgams with Hg. Subsequently, the potential is swept anodically resulting in the dissolution of tire metal species back into solution at their respective fomial potential values. The detemiination step often utilizes a square-wave scan (SWASV), since it increases the rapidity of tlie analysis, avoiding interference from oxygen in solution, and improves the sensitivity. This teclmique has been shown to enable the simultaneous detemiination of four to six trace metals at concentrations down to fractional parts per billion and has found widespread use in seawater analysis. [Pg.1932]

Uncombined elements are all given zero oxidation state. Consider (a) manganese in the permanganate ion, MnO there are four... [Pg.95]

Besides [Ni(CO)4] and organometallic compounds discussed in the next section, nickel is found in the formally zero oxidation state with ligands such as CN and phosphines. Reduction of K2[Ni (CN)4] with potassium in liquid ammonia precipitates yellow K4[Ni (CN)4], which is sensitive to aerial oxidation. Being... [Pg.1166]

Type B (redox) reactions are more complex. Sulfide in this reaction is converted into some other oxidation state of sulfur. For example, sulfides can be converted to a zero oxidation state of elemental sulfur by oxygen ... [Pg.1334]

However, Schwarz s suggestion to focus on bonded atoms rather than neutral atoms also runs into a major problem because the atoms of any element typically show a large variety of oxidation states. For example, atoms of chlorine occur in the zero oxidation state in the chlorine molecule, the —1 state in NaCl, +1 in HOC1, +3 in HC102, +5 in HCIO3, and +7 in HCIO4. [Pg.140]

Some data have been obtained on the activity of the catalyst in a reduced state [for nickel (141,143,144), palladium (144°), and molybdenum (145, 145a). In the case of nickel catalysts the formation of nickel in the zero oxidation state takes place during the reduction of the surface organometallic compound by H2. The infrared spectrum shows the total restoration of the concentration of Si—OH groups (139), so the reduction proceeds according to the scheme ... [Pg.191]

The range of chemicals capable of reducing Pd to the zero oxidation state is vey wide however it is remarkable that the desired selectivity towards the coupling pathway depends in a large measure on the choice of reducing agent. [Pg.218]

Hg " complexes are common, but complexes of Na, Mg", or Al are rare. Chromium complexes are also common, but in such complexes the chromium is in a low or zero oxidation state (which softens it) or attached to other soft ligands. In another application, we may look at this reaction ... [Pg.342]

From the above it can generally be concluded that the basic condition of the occurrence of coupled reactions—if the coupling intermediate is derived from the actor—is that the actor has at least three (including zero) oxidation states. [Pg.514]

Supported metal catalysts, M°/S, are typically two-components materials built up with a nanostructured metal component, in which the metal centre is in the zero oxidation state (M°), and with an inorganic support (S), quite various in its chemical and structural features [1], M° is the component typically deputed to the electronic activation of the reagents involved in the catalyzed reactions. S is typically a microstructured component mainly deputed to the physical support and to the dispersion of M° nanoclusters. [Pg.201]

Generally, stable and well-dispersed metal NPs have been prepared in ILs by the simple reduction of the M(I-IV) complexes or thermal decomposition of the organometallic precursors in the formal zero oxidation state. Recently, other methods such as the phase transfer of preformed NPs in water or organic solvents to the IL and the bombardment of bulk metal precursors with deposition on the ILs have been reported. However, one of the greatest challenges in the NPs field is to synthesize reproducibly metal NPs with control of the size and shape. Selected studies of the preparation of metal NPs in ILs that, in some cases, provide NPs with different sizes and shapes are considered in this section. [Pg.1]

This reaction is also an oxidation-reduction process whereby the oxygen atom is oxidized from the —2 oxidation state to the zero oxidation state as the chlorine atom is reduced from the +1 to —1 oxidation state. As diatomic oxygen is an effective disinfectant, pool owners should avoid the loss of O2 via the decomposition of the hypochlorite ion. Adding hypochlorite-containing disinfectant in the evening hours reduces the loss of the ion from photochemical decomposition. [Pg.71]

Treatment of 4 with either PF3 or 13CO results in CO substitution believed to proceed via a dissociative process yielding Ti(CO)2(PF3)-(dmpe)2 (6) and Ti(13CO)3(dmpe)2. Structural characterization of 6 showed it also to be monomeric, but possessing a monocapped trigonal prismatic geometry. Complexes 4, 5, and 6 may be considered phosphine-substituted derivatives of the as yet unisolated Ti(CO)7, thus representing the only isolable titanium carbonyl complexes where the titanium atom is in the zero oxidation state. [Pg.320]

Note that in this case, the three carbonyl ligands are staggered relative to the carbon atoms in the benzene ring (as indicated by the dotted vertical lines). Similar compounds have also been prepared containing Mo and W. Methyl-substituted benzenes such as mesitylene (1,3,5-trimethylbenzene), hexamethylbenzene, and other aromatic molecules have been used to prepare complexes with several metals in the zero oxidation state. For example, Mo(CO)6 will react with 1,3,5-C6H3(C]T3)3, 1,3,5-trimethylbenzene, which replaces three carbonyl groups. [Pg.771]

If the reaction in which the metallic fraction serves as a catalyst produces water as a by-product, it may well be that the catalyst converts back to an oxide. One should always be aware that in fundamental catalytic studies, where reactions are usually carried out under differential conditions (i.e. low conversions) the catalyst may be more reduced than is the case under industrial conditions. An example is the behavior of iron in the Fischer-Tropsch reaction, where the industrial iron catalyst at work contains substantial fractions of Fe304, while fundamental studies report that iron is entirely carbidic and in the zero-valent state when the reaction is run at low conversions [6],... [Pg.28]

A Even though fluorine only exists in compounds in the —1 oxidation state, it, like all elements, has a zero oxidation state in the elemental form. This means that fluorine is —1 in CaF2, PbF2, SF4, and CIF3, and 0 in F2. [Pg.285]

Single displacement (replacement) reactions are reactions in which atoms of an element replace the atoms of another element in a compound. All of these single replacement reactions are redox reactions, since the element (in a zero oxidation state) becomes an ion. Most single displacement reactions can be categorized into one of three types of reaction ... [Pg.73]

Use of selenosulfite in combination with EDTA complexed Cd, eliminated the elemental Se contamination, and improved the photoresponse of the as-formed deposits [132]. A second method for avoiding conproportionation, also suggested by Skyllas-Kazacos, was to use a cyanide solution to dissolve elemental Se (or Te) and high concentrations of CdCU [127]. Again, the Se was felt to be in the zero oxidation state. [Pg.95]

The noble gases are found in group 18 (VIIIA), which according to some older versions of the periodic table is called group 0. These six elements (He, Ne, Ar, Kr, Xe, and Rn) are inert and have a zero oxidation state. They also have full outer valence shells and represent the end of each period of the periodic table. Helium is placed at the beginning of group 18 (VIIIA) because its outer valence shell is completed and it is inert. [Pg.261]


See other pages where Zero oxidation state oxides is mentioned: [Pg.292]    [Pg.2907]    [Pg.971]    [Pg.1166]    [Pg.245]    [Pg.54]    [Pg.988]    [Pg.344]    [Pg.54]    [Pg.212]    [Pg.246]    [Pg.253]    [Pg.33]    [Pg.424]    [Pg.427]    [Pg.735]    [Pg.166]    [Pg.72]    [Pg.36]    [Pg.233]    [Pg.235]    [Pg.739]    [Pg.740]    [Pg.741]    [Pg.147]    [Pg.198]    [Pg.14]    [Pg.47]   
See also in sourсe #XX -- [ Pg.1151 , Pg.1152 ]




SEARCH



Platinum zero oxidation state

The Zero Oxidation State

Zero oxidation state

Zero oxidation state

Zero oxidation state halides

Zero oxidation state organometallic compounds

© 2024 chempedia.info