Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites probe molecules

A wide variety of NMR methods are being applied to understand solid acids including zeolites and metal halides. Proton NMR is useful for characterizing Brpnsted sites in zeolites. Many nuclei are suitable for the study of probe molecules adsorbed directly or formed in situ as either intermediates or products. Adsorbates on metal halide powders display a rich carbenium ion chemistry. The interpretation of NMR experiments on solid acids has been greatly improved by Ae integration of theoretical chemistry and experiment. [Pg.573]

It is often said that the property of acidity is manifest only in the presence of a base, and NMR studies of probe molecules became common following studies of amines by Ellis [4] and Maciel [5, 6] and phosphines by Lunsford [7] in the early to mid 80s. More recently, the maturation of variable temperature MAS NMR has permitted the study of reactive probe molecules which are revealing not only in themselves but also in the intermediates and products that they form on the solid acid. We carried out detailed studies of aldol reactions in zeolites beginning with the early 1993 report of the synthesis of crotonaldehyde from acetaldehyde in HZSM-5 [8] and continuing through investigations of acetone, cyclopentanone [9] and propanal [10], The formation of mesityl oxide 1, from dimerization and dehydration of... [Pg.575]

The main calorimetric studies on adsorption of water and ammonia on TS-1 and silicalite-1 have been reported by Bobs et al. [64,83,84,86], while other contributions came from the Auroux group [92] and Janchen et al. [93]. Cor-ma s group has investigated the interaction of water on zeolite [39]. The most important conclusion from the available literature is that calorimetric data require a very careful analysis, as probe molecules interact both with the silanols of the internal hydroxyl nests (see Sect. 3.8) and with Ti(lV) species. [Pg.54]

Spectroscopy. In the methods discussed so far, the information obtained is essentially limited to the analysis of mass balances. In that re.spect they are blind methods, since they only yield macroscopic averaged information. It is also possible to study the spectrum of a suitable probe molecule adsorbed on a catalyst surface and to derive information on the type and nature of the surface sites from it. A good illustration is that of pyridine adsorbed on a zeolite containing both Lewis (L) and Brbnsted (B) acid sites. Figure 3.53 shows a typical IR ab.sorption spectrum of adsorbed pyridine. The spectrum exhibits four bands that can be assigned to adsorbed pyridine and pyridinium ions. Pyridine adsorbed on a Bronsted site forms a (protonated) pyridium ion whereas adsorption on a Lewis site only leads to the formation of a co-ordination complex. [Pg.109]

Montanari el al., for example, studied a Co—H-MFI sample through FT-IR spectroscopy of in situ adsorption and coadsorption of probe molecules [o-toluonitrile (oTN), CO and NO] and CH4-SCR process tests under IR operando conditions. The oTN adsorption and the oTN and NO coadsorption showed that both Co2+ and Co3+ species are present on the catalyst surface. Co3+ species are located inside the zeolitic channels while Co2+ ions are distributed both at the external and at the internal surfaces. The operando study showed the activity of Co3+ sites in the reaction. The existence of three parallel reactions, CH4-SCR, CH4 total oxidation and NO to NOz oxidation, was also confirmed. Isocyanate species and nitrate-like species appear to be intermediates of CH4-SCR and NO oxidation, respectively. A mechanism for CH4-SCR has been proposed. On the contrary, Co2+ substitutional sites, very evident and predominant in the catalyst, which are very hardly reducible, seemed not to play a key role in the SCR process [173],... [Pg.128]

Lercher, J.A., Gruendling, C. and Eder-Mirth, G. (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules, Catal. Today, 27, 353. [Pg.135]

Romero Sarria, F., Blasin-Aube, V., Saussey, J. et al. (2006) Trimethylamine as a Probe Molecule To Differentiate Acid Sites in Y-FAU Zeolite FTIR Study, J. Phys. Chem. B, 110, 13130. [Pg.136]

This study permits to discuss the efficiency of new probe molecules for the characterization of basic sites in zeolites. For MBOH and for methylacetylene, the observed frequencies shift account for the variations in the basic strength of the zeolitic framework oxygen atoms. Interestingly, methylacetylene also informs on the environment of the basic sites and H2S dissociation brings information on the amount of strong basic sites. These results show the high potential and the complementarity of these protic probes to describe the strength, concentration and environment of basic sites. [Pg.112]

Low temperature CO sorption experiments monitored with the IR spectroscopy were used to determine the nature of active (acid) sites present in the Fe-TON zeolites. It is well known that CO is a useful probe molecule for Lewis acid sites. Narrow and well resolved bands appear in the region 2135 - 2150 cm"1. The IR spectra of CO sorbed in amount sufficient to cover all Lewis sites in the Fe-TON of different Si/Fe ratios are presented in Figure 2A. The samples of a high iron content (Si/Fe=27, 36) showed a significantly lower thermal stability. The activation of the NFL form of these Fe-TON... [Pg.114]

The apparent acidities of zeolite catalysts are characterized by Av0h values induced by adsorption of hexane (Av0h.C6) under the same conditions than those applied during separate catalytic experiments. The Avoh,c6 values for the different zeolite samples shown in fig. 2 were determined as Figure 1. DRIFT spectra measured in the above for the nitrogen probe molecule. vOH region before (solid lines) and after (dashed lines) contacting the samples with N2 at 298 K and 9 bar equilibrium pressure. [Pg.122]

It is generally accepted that localization and coordination of monovalent Cu ions in different zeolites have significant influence on the catalytic activity. The localization and coordination of Cu ions was studied by means of adsorption of small probe molecules, in particular, carbon monoxide was used often due to its ability to form a stable mono-carbonyl complex with the Cu+ ion. The formation of this complex was investigated by the FTIR and by the microcalorimetry [1-3]. [Pg.141]

In view of catalytic potential applications, there is a need for a convenient means of characterization of the porosity of new catalyst materials in order to quickly target the potential industrial catalytic applications of the studied catalysts. The use of model test reactions is a characterization tool of first choice, since this method has been very successful with zeolites where it precisely reflects shape-selectivity effects imposed by the porous structure of tested materials. Adsorption of probe molecules is another attractive approach. Both types of approaches will be presented in this work. The methodology developed in this work on zeolites Beta, USY and silica-alumina may be appropriate for determination of accessible mesoporosity in other types of dealuminated zeolites as well as in hierarchical materials presenting combinations of various types of pores. [Pg.217]

Acidity of both zeolites was investigated by adsorption of ammonia, pyridine, d3-acetonitrile and pivalonitrile ((CH3)3CCN) used as probe molecules followed by FTIR spectroscopy. All samples were activated in a form of self-supporting wafers at 450 °C or 550 °C under vacuum for 1 h prior to the adsorption of probe molecules. [Pg.274]

Another possibility for characterizing zeolite acid sites is the adsorption of basic probe molecules and subsequent spectroscopic investigation of the adsorbed species. Phosphines or phosphine oxides have been quite attractive candidates due to the high chemical shift sensitivity of 31P, when surface interactions take place [218-222]. This allows one to obtain information on the intrinsic accessibility and acidity behavior, as well as the existence of different sites in zeolite catalysts. [Pg.212]

A remarkable application of phosphines by Grey and coworkers for acid site characterization is the use of diphosphines with alkyl chain spacers of different length between the phosphine moieties. Based on careful NMR analysis and appropriate loading levels with diphosphines, the Al distribution can be determined [223, 224], The idea behind this tool is that the phosphine groups will be proto-nated, when they are close to an acid site in the zeolite structure. Protonation of both phosphine groups in one probe molecule will only occur, when the distance between the two acid sites is compatible with the molecular dimension of the diphosphine. [Pg.212]

The effect of probe molecules on the 27A1 NMR has attracted some attention recently. In particular, the determination of the quadrupole coupling constant, Cq, is a sensitive means to learn more about the bonding situation at the aluminum in acid sites, and how it reflects the interaction with basic probe molecules. If one of the four oxygen atoms in an AIO4 tetrahedral coordination is protonated, as in a zeolitic acid site, the coordination is somewhat in between a trigonal and a tetrahedral A1 environment [232]. The protonated oxygen decreases its bond order to A1 to approximately half of its size compared to an unprotonated zeolite. [Pg.213]

We have unified experimental and theoretical DFT data to illustrate the significance of this difference between boron and aluminum, and to show the consistency of data from different laboratories and different methods. The results are shown in Fig. 6. For B-ZSM-5, proton transfer takes place at proton affinities of the probe molecule of at least 854 kJ/mol, which is somewhat higher than that reported for A1 zeolites (821 kJ/mol) [235]. [Pg.213]

The data points in Fig. 6 show a slow decrease of Cq for aluminosilicate zeolites with increasing proton affinity of the probe molecule. Experimental data of methanol were not included in the illustration because of possible proton hopping which... [Pg.213]

Fig. 6 Normalized quadrupole coupling constants, Cq/Cq(0) as a function of proton affinity of adsorbed probe molecules. Cq(0) is the quadrupole coupling constant of the unloaded acidic zeolite (assumed to be loaded with N2 molecules, proton affinity of494 kJ/mol). Data are taken from DFT calculations of Ehresmann [234] and Koller [232], and NMR measurements of Jiao [233], and Marthala [235]... Fig. 6 Normalized quadrupole coupling constants, Cq/Cq(0) as a function of proton affinity of adsorbed probe molecules. Cq(0) is the quadrupole coupling constant of the unloaded acidic zeolite (assumed to be loaded with N2 molecules, proton affinity of494 kJ/mol). Data are taken from DFT calculations of Ehresmann [234] and Koller [232], and NMR measurements of Jiao [233], and Marthala [235]...
The analysis of the structural properties of zeolitic acid sites based on dipolar interactions has further improved the understanding of acidity. Grey and Vega were the first to apply the 1H 27A1 TRAPDOR technique [36]. The REAPDOR method was first applied by Kalwei and coauthors [236-238] on bare acid sites and also on zeolites loaded with probe molecules. These methods allow one to distinguish... [Pg.214]

A very convenient method to quantitatively determined the number of Bronsted add sites in the often used photochemical nano-vessels, zeolites X and Y, is available.28 This method take advantage of indicator/probe molecules which undergo an intense color change upon protonation within the zeolite pore network. The amount of a base necessary to quench the color change gives a direct measure of the concentration of acidic sites. The base used to titrate the Bronsted sites must be more basic than the probe molecule and sufficiently basic to be completely protonated. [Pg.230]

The ir measurements were carried out with a Perkin Elmer 580 spectrometer and fused silica cell with KBr windows allowing to outgass the zeolitic wafer at a desired temperature and to introduce and further outgass a probe molecule without contact with air. [Pg.253]


See other pages where Zeolites probe molecules is mentioned: [Pg.575]    [Pg.575]    [Pg.36]    [Pg.575]    [Pg.245]    [Pg.102]    [Pg.105]    [Pg.106]    [Pg.136]    [Pg.59]    [Pg.61]    [Pg.101]    [Pg.109]    [Pg.109]    [Pg.110]    [Pg.118]    [Pg.220]    [Pg.253]    [Pg.273]    [Pg.274]    [Pg.274]    [Pg.278]    [Pg.417]    [Pg.210]    [Pg.211]    [Pg.213]    [Pg.230]    [Pg.294]    [Pg.252]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Probe molecules

Zeolites molecules

© 2024 chempedia.info