Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites intermediate

Oxidation of phenol to catechol Zeolite Intermediate in drugs MASR... [Pg.552]

Si/Al molar ratio in the activated fly ash, zeolites can be classified/graded as low silica zeolites , intermediate silica zeolites and high silica zeolites , as listed in Table 2.2. In general, for zeolites, an increase in this parameter (i.e., Si/Al from 0.5 to infinity) [5] can significantly result in the increase in various other parameters (viz., acid resistivity, thermal stability and hydrophobicity) except few parameters (viz., hydrophilicity, acid site density and cation concentration) which get decreased [5, 8, 10,40, 41]. In general, synthetic zeolites hold some key advantages over their counterparts i.e. natural zeolites. Zeolites type A, X, Y, P and Na-Pl are well known synthetic zeolites synthesized from fly ash which have a wider range of industrial applications than the natural zeolites [1, 8, 20, 22, 36, 42, 43]. [Pg.11]

The next step is the ahstraction of a hydride ion hy a Lewis acid site from the zeolite surface to form the more stable allylic carhocation. This is again followed hy a proton elimination to form a cyclohexadiene intermediate. The same sequence is followed until the ring is completely aromatized. [Pg.75]

Vinyl chloride is an important monomer for polyvinyl chloride (PVC). The main route for obtaining this monomer, however, is via ethylene (Chapter 7). A new approach to utilize ethane as an inexpensive chemical intermediate is to ammoxidize it to acetonitrile. The reaction takes place in presence of a cobalt-B-zeolite. [Pg.171]

A fully rare-earth-exchanged zeolite equilibrates at a high UCS. whereas a non-rare-earth zeolite equilibrates at a very low UCS in the range of 24.25 [3]. All intermediate levels of rare-earth-exchanged zeolite can be produced. The rare earth increases zeolite activity and... [Pg.90]

Waters of intermediate hardness frequently contain fair amounts of other constituents and there is often a tendency for the scale to be loosely attached, permitting corrosion to occur irregularly underneath. In most waters the bicarbonate content is less than the hardness, but a few natural waters are known where the reverse is the case. These waters have been partially softened by the zeolite process which occurs underground, and then contain sodium bicarbonate which, together with the high concentration of chloride and other minerals, may accelerate attack. [Pg.354]

Microporous catalysts are heterogeneous catalysts used in catalytic converters and for many other specialized applications, because of their very large surface areas and reaction specificity. Zeolites, for example, are microporous aluminosilicates (see Section 14.19) with three-dimensional structures riddled with hexagonal channels connected by tunnels (Fig. 13.38). The enclosed nature of the active sites in zeolites gives them a special advantage over other heterogeneous catalysts, because an intermediate can be held in place inside the channels until the products form. Moreover, the channels allow products to grow only to a particular size. [Pg.687]

FIGURE 13.38 The structure of the ZSM-5 zeolite catalyst. Reactants diffuse through the channels, which are narrow enough to hold intermediates in positions favorable for reaction. [Pg.687]

In Table 1.1 a comparison is made of the differences in free energies for two different zeolites. Note the large repulsive energies computed for the intermediates and their sensitivity to zeolite structure. [Pg.16]

This is the reason that for complex cracking reactions in zeohtes the product pattern can be predicted from a simulation of the free energies of the corresponding intermediate molecules in the zeolite [11]. [Pg.17]

Figure 5 shows such an Auger parameter plot for a series of aluminum compounds. Due to crowding, several values given in Table I are omitted from this plot. Most of the compounds are grouped to the lower left, whereas aluminum metal is at the upper right. Intermediate between these are sodium zeolite and zinc aluminate (ZnAl204). [Pg.42]

The synthesis of ethylenediamine (EDA) from ethanolamine (EA) with ammonia over acidic t3pes of zeolite catalyst was investigated. Among the zeolites tested in this study, the protonic form of mordenite catalyst that was treated with EDTA (H-EDTA-MOR) showed the highest activity and selectivity for the formation of EA at 603 K, W/F=200 g h mol, and NH3/ =50. The reaction proved to be highly selective for EA over H-EDTA-MOR, with small amounts of ethyleneimine (El) and piperazine (PA) derivatives as the side products. IR spectroscopic data provide evidence that the protonated El is the chemical intermediate for the reaction. The reaction for Uie formation of EDA from EA and ammonia required stronger acidic sites in the mordenite channels for hi er yield and selectivity. [Pg.267]

A wide variety of NMR methods are being applied to understand solid acids including zeolites and metal halides. Proton NMR is useful for characterizing Brpnsted sites in zeolites. Many nuclei are suitable for the study of probe molecules adsorbed directly or formed in situ as either intermediates or products. Adsorbates on metal halide powders display a rich carbenium ion chemistry. The interpretation of NMR experiments on solid acids has been greatly improved by Ae integration of theoretical chemistry and experiment. [Pg.573]

It is often said that the property of acidity is manifest only in the presence of a base, and NMR studies of probe molecules became common following studies of amines by Ellis [4] and Maciel [5, 6] and phosphines by Lunsford [7] in the early to mid 80s. More recently, the maturation of variable temperature MAS NMR has permitted the study of reactive probe molecules which are revealing not only in themselves but also in the intermediates and products that they form on the solid acid. We carried out detailed studies of aldol reactions in zeolites beginning with the early 1993 report of the synthesis of crotonaldehyde from acetaldehyde in HZSM-5 [8] and continuing through investigations of acetone, cyclopentanone [9] and propanal [10], The formation of mesityl oxide 1, from dimerization and dehydration of... [Pg.575]

In contrast to NaZSM-5 zeolite, introduction of CoZSM-5 or HZSM-5 zeolite in the reaction system shifts the "light-off" temperature and modifies the chemistry now not only NO but Nj is formed. Hence, some intermediate species required for Nj formation must be stabilized on the catalyst surface. The "light-off"temperature shifts observed with CoZSM-5 and HZSM-5 catalysts may result from the enhanced redox capacity provided by these catalysts or from the NOj/NO equilibrium achieved more readily than with NaZSM-5. Moreover, equilibrium is approached at a somewhat lower temperature over CoZSM-5 than HZSM-5, and much lower than with the empty reactor (see Fig. 1 of Ref. lOl.The decomposition reaction of NOj into NO -t- occurs readily on these catalysts and the "light-off" temperature of both combustion and SCR is lower in comparison with that of the homogeneous reaction. [Pg.659]

An in situ infrared investigation has been conducted of the reduction of NO by CH4 over Co-ZSM-5. In the presence of O2, NO2 is formed via the oxidation of NO. Adsorbed NO2 then reacts with CH4. Nitrile species are observed and found to react very rapidly with NO2, and at a somewhat slower rate with NO and O2. The dynamics of the disappearance of CN species suggests that they are reactive intermediates, and that N2 and CO2 are produced by the reaction of CN species with NO2. While isocyanate species are also observed, these species are associated with A1 atoms in the zeolite lattice and do not act as reaction intermediates. A mechanism for NO reduction is proposed that explains why O2 facilitates the reduction of NO by CH4, and why NO facilitates the oxidation of CH4 by O2. [Pg.661]

Intermediates were also observed in the synthesis of a neutral cluster, Ir4(CO)i2, from Ir(CO)2(acac) in the cages of zeohte NaY these were characterized by IR and extended X-ray absorption fine structure (EXAFS) spectroscopies, the latter being a technique ideally suited to investigation of small, highly dispersed species present in small amoimts in sohds. The spectra indicated dimeric intermediates, possibly Ir2(CO)8 [ 16], when the reaction was carried out in the near absence of water in the zeohte in contrast, the reaction in the dehydrated zeolite was faster, and no evidence of intermediates was observed [16]. [Pg.215]

Noguchi, H., Yoda, E., Ishizawa, N., Kondo, J. N., Wada, A., Kobayashi, H. and Domen, K. (2005) Direct observation of unstable intermediate species in the reaction of trans-2-butene on ferrierite zeolite by picosecond infrared laser spectroscopy. J. Phys. Chem B, 109, 17217-17223. [Pg.100]

Acid-catalysed rearrangement of epoxides is another widely used reaction in the fine chemicals industry. Here again the use of solid acid catalysts such as zeolites is proving advantageous. Two examples are shown in Fig. 2.25 the isomerization of rsophorone oxide (Elings et al., 1997) and the conversion of a-pinene oxide to campholenic aldehyde (Holderich et al., 1997 Kunkeler etal., 1998). Both products are fragrance intermediates. [Pg.43]

Some companies are successfully integrating chemo- and biocatalytic transformations in multi-step syntheses. An elegant example is the Lonza nicotinamide process mentioned earlier (.see Fig. 2.34). The raw material, 2-methylpentane-1,5-diamine, is produced by hydrogenation of 2-methylglutaronitrile, a byproduct of the manufacture of nylon-6,6 intermediates by hydrocyanation of butadiene. The process involves a zeolite-catalysed cyciization in the vapour phase, followed by palladium-catalysed dehydrogenation, vapour-pha.se ammoxidation with NH3/O2 over an oxide catalyst, and, finally, enzymatic hydrolysis of a nitrile to an amide. [Pg.54]

The concept of extractive reaction, which was conceived over 40 years ago, has connections with acid hydrolysis of pentosans in an aqueous medium to give furfural, which readily polymerizes in the presence of an acid. The use of a water-immiscible solvent, such as tetralin allows the labile furfural to be extracted and thus prevents polymerization, increases the yield, and improves the recovery procedures. In the recent past an interesting and useful method has been suggested by Rivalier et al. (1995) for acid-catalysed dehydration of hexoses to 5-hydroxy methyl furfural. Here, a new solid-liquid-liquid extractor reactor has been suggested with zeolites in protonic form like H-Y-faujasite, H-mordenite, H-beta, and H-ZSM-5, in suspension in the aqueous phase and with simultaneous extraction of the intermediate product with a solvent, like methyl Aobutyl ketone, circulating countercurrently. [Pg.144]

Isomerization of a-pinene epoxide to campholenic aldehyde, an intermediate for perfumery chemicals, has been carried out elegantly with ultra stable Y-zeolite. [Pg.153]


See other pages where Zeolites intermediate is mentioned: [Pg.349]    [Pg.72]    [Pg.834]    [Pg.334]    [Pg.44]    [Pg.108]    [Pg.148]    [Pg.17]    [Pg.39]    [Pg.73]    [Pg.93]    [Pg.97]    [Pg.185]    [Pg.318]    [Pg.64]    [Pg.56]    [Pg.88]    [Pg.94]    [Pg.95]    [Pg.499]    [Pg.52]    [Pg.131]    [Pg.275]    [Pg.575]    [Pg.575]    [Pg.601]    [Pg.193]    [Pg.33]    [Pg.427]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



© 2024 chempedia.info