Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite bands

The formation of peroxide and superoxide on Fe,H/MFI compared with Fe/MFI also shows two distinguishing features. First, the amount of peroxide on Fe,H/MFI at room temperature is significantly greater than on Fe/MFI, as determined by the peroxide peak intensity relative to the intensities of the zeolite bands (52). Second, on Fe,H/MFI, peroxide is converted to superoxide when the sample temperature is lowered to 93 K, and then restored when the temperature is returned to 300 K. Figure 8 shows an overlay of Raman spectra characterizing Fe,H/MFI measured at 300 and at 93 K using 2. The band at 703 cm ( 02 ) decreases at 93 K relative to its intensity at 300 K, whereas the intensity near 1090cm ( Oj) shows the opposite behavior with temperature. In the spectrum of Fe/MFI, the relative peak intensities of peroxide and superoxide remain constant with temperature between 93 and 300 K. (A specialized variable-temperature fluidized-bed Raman cell was constructed for these experiments.)... [Pg.88]

Figure 6 Typical IR spectra for a "structurally pure" H-Y zeolite. Band assignment Is given In text. Figure 6 Typical IR spectra for a "structurally pure" H-Y zeolite. Band assignment Is given In text.
When CoX was similarly treated with ammonia vapour a band at 1312 cm, similarly associated to C0-NH3 symmetric vibration, was observed (see Figure 8). When compared to other adsorbates (pyridine, acetone and water vapour) for their ability to shift the Metal-Zeolite bands (at 896 cm for CuX and 918 cm for CoX), the band positions for each of the metal-adsorbate vibrations was distinct (see Table 2). [Pg.150]

An interesting point is that infrared absorptions that are symmetry-forbidden and hence that do not appear in the spectrum of the gaseous molecule may appear when that molecule is adsorbed. Thus Sheppard and Yates [74] found that normally forbidden bands could be detected in the case of methane and hydrogen adsorbed on glass this meant that there was a decrease in molecular symmetry. In the case of the methane, it appeared from the band shapes that some reduction in rotational degrees of freedom had occurred. Figure XVII-16 shows the IR spectrum for a physisorbed H2 system, and Refs. 69 and 75 give the IR spectra for adsorbed N2 (on Ni) and O2 (in a zeolite), respectively. [Pg.584]

The diffusion, location and interactions of guests in zeolite frameworks has been studied by in-situ Raman spectroscopy and Raman microscopy. For example, the location and orientation of crown ethers used as templates in the synthesis of faujasite polymorphs has been studied in the framework they helped to form [4.297]. Polarized Raman spectra of p-nitroaniline molecules adsorbed in the channels of AIPO4-5 molecular sieves revealed their physical state and orientation - molecules within the channels formed either a phase of head-to-tail chains similar to that in the solid crystalline substance, with a characteristic 0J3 band at 1282 cm , or a second phase, which is characterized by a similarly strong band around 1295 cm . This second phase consisted of weakly interacting molecules in a pseudo-quinonoid state similar to that of molten p-nitroaniline [4.298]. [Pg.262]

The variation in the lattice vibration of the solid products was examined by utilizing the FT-IR technique at successive DGC process times and the results are presented in Fig. 5. The absorption bands at 550 cm and 450 cm" are assigned to the vibration of the MFI-type zeolite and the internal vibration of tetrahedral inorganic atoms. The band 960 cm" has been assigned to the 0-Si stretching vibration associated with the incorporation of titanium species into silica lattice [4], This indicates that the amorphous wall of Ti-MCM-41 was transformed into the TS-1 structure. [Pg.791]

UV-visible spectra of the cluster 1 and molybdenum/zeolite catalysts are shown in Figure 1. The cluster 1 showed bands at 300, 390 and ca. 650 nm. Similar bands were observed for the spectrum of each molybdenum/zeolite catalyst, suggesting that the structure of cluster 1 was practically unchanged after ion exchange. [Pg.112]

The XPS spectra of the freshly sulfided Co-Mo/NaY catalysts were measured on an XPS-7000 photoelectron spectrometer (Rigaku, A1 anode 1486.6 eV). The sample mounted on a holder was transferred from a glove bag into a pretreatment chamber attached to the spectrometer as possible as carefully not to be contacted with air. The binding energies (BE) were referenced to the Si2p band at 103.0 eV for the NaY zeolite, which had teen determined by the Cls reference level at 285.0 eV due to adventitious carbon. [Pg.504]

CoSx-MoSx/NaY exhibited doublet bands at 1867 and 1807 cm, accompanying a weak shoulder peak at ca. 1880 cm. These signals are apparently assigned to those of NO molecules adsorbed on Co sulfides. No peaks ascribable to e NO adsorption on Mo sulfide sites were detected at all. What is important in Fig.7 is that in CoSx-MoSx/NaY, coordinative unsaturation sites are present only on the Co sites in spite of the coexistence of the same amount of Mo sulfide species in the zeolite cavities. These results clearly support that the Co sites in CoSx-MoSx/NaY play major roles in the HYD and HDS reactions. [Pg.509]

Based on previous studies [15, 22-25], the band at 1941 cm-i is assigned to Co2+(NO), and the pair of bands at 1894 and 1815 cm-i, to Co2+(NO)2- The shoulders at 1874 and 1799 cm may be due to a second dinitrosyl species. While little is known about the location and coordination of the Co 2+ in ZSM-5, it is likely that cobalt ions are associated with both [Si-0-Al]- and [Al-0-Si-0-AI]2- structures in the zeolite. In the former case, the cobalt cations are assumed to be present as Co2+(OH-) cations and in the latter case as Co2+ cations. The presence of cobalt cations in different environments could account for the appearance of two sets of dinitrosyl bands. The band at 2132 cm-> is present not only on Co-ZSM-5 but also on H-ZSM-5 and Na-ZSM-5, and has been observed by several authors on Cu-ZSM-5 [26-28]. [Pg.664]

The presence of methylenic bands shifted at higher frequency in the very early stages of the polymerization reaction has also been reported by Nishimura and Thomas [114]. A few years later, Spoto et al. [30,77] reported an ethylene polymerization study on a Cr/silicalite, the aluminum-free ZSM-5 molecular sieve. This system is characterized by localized nests of hydroxyls [26,27,115], which can act as grafting centers for chromium ions, thus showing a definite propensity for the formation of mononuclear chromium species. In these samples two types of chromium are present those located in the internal nests and those located on the external surface. Besides the doublet at 2920-2850 cm two additional broad bands at 2931 and 2860 cm are observed. Even in this favorable case no evidence of CH3 groups was obtained [30,77]. The first doublet is assigned to the CH2 stretching mode of the chains formed on the external surface of the zeolite. The bands at 2931 and... [Pg.23]

Spectroscopy. In the methods discussed so far, the information obtained is essentially limited to the analysis of mass balances. In that re.spect they are blind methods, since they only yield macroscopic averaged information. It is also possible to study the spectrum of a suitable probe molecule adsorbed on a catalyst surface and to derive information on the type and nature of the surface sites from it. A good illustration is that of pyridine adsorbed on a zeolite containing both Lewis (L) and Brbnsted (B) acid sites. Figure 3.53 shows a typical IR ab.sorption spectrum of adsorbed pyridine. The spectrum exhibits four bands that can be assigned to adsorbed pyridine and pyridinium ions. Pyridine adsorbed on a Bronsted site forms a (protonated) pyridium ion whereas adsorption on a Lewis site only leads to the formation of a co-ordination complex. [Pg.109]

Figure 2.15. X-band EPR spectra recorded after NO adsorption (1 -5 torr) onto ConZSM-5, FenZSM-5 (after [64]), and Cu ZSM-5 (after [41]) zeolites. Figure 2.15. X-band EPR spectra recorded after NO adsorption (1 -5 torr) onto ConZSM-5, FenZSM-5 (after [64]), and Cu ZSM-5 (after [41]) zeolites.
Here, A is the nearly isotropic nuclear coupling constant, I is the nuclear spin (Iun = I), and m is the particular nuclear spin state. It may be observed that the zero field splitting term D has a second-order effect which must be considered at magnetic fields near 3,000 G (X-band). In addition to this complication nuclear transitions for which Am = 1 and 2 must also be considered. The analysis by Barry and Lay (171) of the Mn2+ spectrum in a CsX zeolite is shown in Fig. 35. From such spectra these authors have proposed that manganese is found in five different sites, depending upon the type of zeolite, the primary cation, and the extent of dehydration. [Pg.324]

Absorption of carbon monoxide was used to probe the acidity of the various OH groups to understand their role in catalysis. The study is therefore focussed on OH groups in the supercage of the zeolite, hence the bands between 3600 and 3700 cm"1. Better-resolved spectra were obtained by cooling the samples down to 100 K, the temperature at which the experiment is done. Five different v(OH) bands, shifted from 5 cm"1 to higher frequency at low temperature, were detected in the OHHf band group, at 3645 3635, 3625, 3608 and 3600 cm 1 (for HF0, HFi, HF2, HF3, HF4, respectively) with various intensities. [Pg.62]

D correlation analysis is a powerful tool applicable to the examination of data obtained from infrared spectroscopy. The correlation intensities, displayed in the form of 2D maps, allow us to correlate the shift induced by CO adsorption and acidity of sites in dealuminated zeolites. Results are in accordance with previous results, obtained using only IR measurements, proving the validity of this technique. New correlations allowed the assignment of very complex groups of bands, and 2D correlation revealed itself as a great help for understanding acidity in dealuminated zeolites. 2D correlation has allowed us to validate the model obtained by NMR. [Pg.64]

Diffraction patterns and FTIR spectra of skeletal vibrations of the ZSM-5 and ferrierite zeolites indicated high crystallinity of the analyzed samples. The strong band with a chemical shift of about 55 ppm in the 27Al MAS NMR spectra of hydrated zeolites indicated the presence of more than 97 % Al in the framework in tetrahedral coordination the very low intensity of the peak at 0 ppm indicated less than 3 % rel. of Al in octahedral coordination. [Pg.70]


See other pages where Zeolite bands is mentioned: [Pg.47]    [Pg.1003]    [Pg.313]    [Pg.366]    [Pg.47]    [Pg.1003]    [Pg.313]    [Pg.366]    [Pg.321]    [Pg.40]    [Pg.198]    [Pg.455]    [Pg.185]    [Pg.508]    [Pg.510]    [Pg.510]    [Pg.511]    [Pg.547]    [Pg.647]    [Pg.44]    [Pg.165]    [Pg.174]    [Pg.78]    [Pg.47]    [Pg.102]    [Pg.114]    [Pg.116]    [Pg.125]    [Pg.178]    [Pg.178]    [Pg.179]    [Pg.186]    [Pg.36]    [Pg.39]    [Pg.59]    [Pg.70]    [Pg.71]   
See also in sourсe #XX -- [ Pg.388 ]




SEARCH



© 2024 chempedia.info