Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yttrium elements

Starting from 1913 scientists from various countries had been searching intensely for the elusive rare-earth element and it seemed strange that they had not found it earlier. Indeed, the elements of the first half of the rare-earth family known as the cerium elements (from lanthanum to gadolinium) had been shown by geochemists to be more abundant in nature than the yttrium elements of the second half of the family (from terbium to lutecium). But all the yttrium elements had been found while an empty box had remained in the cerium group between neodymium and samarium. [Pg.209]

Bouisskes, 6., F. Gaume-Mahn, Ch. Ia Blanchetais, "31 Loriers and F. Trombe, 1959, Scandium, Yttrium, Elements de Terres Rares, Actinium, in Pascal, P., ed.. Nouveau Traite de Chimie Minerale, Vol. VII, Parts I and II (Masson, Paris). [Pg.108]

Reference has been made already to the existence of a set of inner transition elements, following lanthanum, in which the quantum level being filled is neither the outer quantum level nor the penultimate level, but the next inner. These elements, together with yttrium (a transition metal), were called the rare earths , since they occurred in uncommon mixtures of what were believed to be earths or oxides. With the recognition of their special structure, the elements from lanthanum to lutetium were re-named the lanthanons or lanthanides. They resemble one another very closely, so much so that their separation presented a major problem, since all their compounds are very much alike. They exhibit oxidation state -i-3 and show in this state predominantly ionic characteristics—the ions. [Pg.441]

Scandium is a silver-white metal which develops a slightly yellowish or pinkish cast upon exposure to air. A relatively soft element, scandium resembles yttrium and the rare-earth metals more than it resembles aluminum or titanium. [Pg.50]

Ytterby, a village in Sweden near Vauxholm) Yttria, which is an earth containing yttrium, was discovered by Gadolin in 1794. Ytterby is the site of a quarry which yielded many unusual minerals containing rare earths and other elements. This small town, near Stockholm, bears the honor of giving names to erbium, terbium, and ytterbium as well as yttrium. [Pg.73]

For organometailic compounds, the situation becomes even more complicated because the presence of elements such as platinum, iron, and copper introduces more complex isotopic patterns. In a very general sense, for inorganic chemistry, as atomic number increases, the number of isotopes occurring naturally for any one element can increase considerably. An element of small atomic number, lithium, has only two natural isotopes, but tin has ten, xenon has nine, and mercury has seven isotopes. This general phenomenon should be approached with caution because, for example, yttrium of atomic mass 89 is monoisotopic, and iridium has just two natural isotopes at masses 191 and 193. Nevertheless, the occurrence and variation in patterns of multi-isotopic elements often make their mass spectrometric identification easy, as depicted for the cases of dimethylmercury and dimethylplatinum in Figure 47.4. [Pg.349]

Lanthanides is the name given collectively to the fifteen elements, also called the elements, ranging from lanthanum. La, atomic number 57, to lutetium, Lu, atomic number 71. The rare earths comprise lanthanides, yttrium, Y, atomic number 39, and scandium. Sc, atomic number 21. The most abundant member of the rare earths is cerium, Ce, atomic number 58 (see Ceriumand cerium compounds). [Pg.539]

High Temperature Corrosion. The rate of oxidation of magnesium adoys increases with time and temperature. Additions of berydium, cerium [7440-45-17, lanthanum [7439-91-0] or yttrium as adoying elements reduce the oxidation rate at elevated temperatures. Sulfur dioxide, ammonium fluoroborate [13826-83-0] as wed as sulfur hexafluoride inhibit oxidation at elevated temperatures. [Pg.334]

Some nut trees accumulate mineral elements. Hickory nut is notable as an accumulator of aluminum compounds (30) the ash of its leaves contains up to 37.5% of AI2O2, compared with only 0.032% of aluminum oxide in the ash of the Fnglish walnut s autumn leaves. As an accumulator of rare-earth elements, hickory greatly exceeds all other plants their leaves show up to 2296 ppm of rare earths (scandium, yttrium, lanthanum, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium). The amounts of rare-earth elements found in parts of the hickory nut are kernels, at 5 ppm shells, at 7 ppm and shucks, at 17 ppm. The kernel of the Bra2d nut contains large amounts of barium in an insoluble form when the nut is eaten, barium dissolves in the hydrochloric acid of the stomach. [Pg.272]

No fewer than 14 pure metals have densities se4.5 Mg (see Table 10.1). Of these, titanium, aluminium and magnesium are in common use as structural materials. Beryllium is difficult to work and is toxic, but it is used in moderate quantities for heat shields and structural members in rockets. Lithium is used as an alloying element in aluminium to lower its density and save weight on airframes. Yttrium has an excellent set of properties and, although scarce, may eventually find applications in the nuclear-powered aircraft project. But the majority are unsuitable for structural use because they are chemically reactive or have low melting points." ... [Pg.100]

Scandium is very widely but thinly distributed and its only rich mineral is the rare thortveitite, Sc2Si20v (p. 348), found in Norway, but since scandium has only small-scale commercial use, and can be obtained as a byproduct in the extraction of other materials, this is not a critical problem. Yttrium and lanthanum are invariably associated with lanthanide elements, the former (Y) with the heavier or Yttrium group lanthanides in minerals such as xenotime, M "P04 and gadolinite, M M SijOio (M = Fe, Be), and the latter (La) with the lighter or cerium group lanthanides in minerals such as monazite, M P04 and bastnaesite, M C03F. This association of similar metals is a reflection of their ionic radii. While La is similar in size to the early lanthanides which immediately follow it in the periodic table, Y , because of the steady fall in ionic radius along the lanthanide series (p. 1234), is more akin to the later lanthanides. [Pg.945]

Yttrium and lanthanum are both obtained from lanthanide minerals and the method of extraction depends on the particular mineral involved. Digestions with hydrochloric acid, sulfuric acid, or caustic soda are all used to extract the mixture of metal salts. Prior to the Second World War the separation of these mixtures was effected by fractional crystallizations, sometimes numbered in their thousands. However, during the period 1940-45 the main interest in separating these elements was in order to purify and characterize them more fully. The realization that they are also major constituents of the products of nuclear fission effected a dramatic sharpening of interest in the USA. As a result, ion-exchange techniques were developed and, together with selective complexation and solvent extraction, these have now completely supplanted the older methods of separation (p. 1228). In cases where the free metals are required, reduction of the trifluorides with metallic calcium can be used. [Pg.945]

Compared to later elements in their respective transition series, scandium, yttrium and lanthanum have rather poorly developed coordination chemistries and form weaker coordinate bonds, lanthanum generally being even less inclined to form strong coordinate bonds than scandium. This is reflected in the stability constants of a number of relevant 1 1 metal-edta complexes ... [Pg.950]

To avoid this confusion, and because many of the elements are actually far from rare, the terms lanthanide , lanthanon and lanthanoid have been introduced. Even now, however, there is no general agreement about the position of La, i.e, whether the group is made up of the elements La to Lu or Ce to Lu. Throughout this chapter the term lanthanide and the general symbol, Ln, will be used to refer to the fourteen elements cerium to lutetium inclusive, the Group 3 elements, scandium, yttrium and lanthanum having already been dealt with in Chapter 20. [Pg.1227]

The bulk of both monazite and bastnaesite is made up of Ce, La, Nd and Pr (in that order) but, whereas monazite typically contains around 5-10% Th02 and 3% yttrium earths, these and the heavy lanthanides are virtually absent in bastnaesite. Although thorium is only weakly radioactive it is contaminated with daughter elements such as Ra which are more active and therefore require careful handling during the processing of monazite. This is a complication not encountered in the processing of bastnaesite. [Pg.1229]

Other detrimental factors which should to be taken into account in the materials selection process include temperature cycling and the presence of halide gases. Specialist alloys containing rare earth element additions such as cerium, lanthanum and yttrium have been developed for use in certain environments up to 130°C. [Pg.900]

Make an electron configuration table like Table 22-1 for the fifth-row transition elements— yttrium (Z = 39) through cadmium (Z = 48). In elements 41 through 45, one of the 5s electrons moves over to a 4d orbital. In element 46, two electrons do this. [Pg.390]

In the case of lanthanide elements, other sandwich-like compounds such as the triple-decker phthalocyanincs have been reported. Yttrium(III) acetate hexahydratc when treated with phthalonitrile at 230 C for 8 hours forms a triple-decker phthalocyanine.202... [Pg.752]

In addition to meeting the foregoing requirements, a good internal standard will be easy to add uniformly and precisely, and (preferably) no appreciable amount of the element St (free or combined) will be present in the sample before the addition. Cope29 provides an excellent illustration of these points. He found that yttrium nitrate dissolved in ethyl alcohol could be added to a powdered uranium mineral in a mortar, whereupon grinding immediately to dryness dispersed the internal standard (yttrium) so uniformly that uranium could be satisfactorily determined in certain minerals. But the mineral euxenite is an exception, for it contains both yttrium and uranium, and this complicates the uranium determination with yttrium as internal standard. [Pg.187]


See other pages where Yttrium elements is mentioned: [Pg.332]    [Pg.100]    [Pg.49]    [Pg.127]    [Pg.332]    [Pg.100]    [Pg.49]    [Pg.127]    [Pg.1632]    [Pg.198]    [Pg.228]    [Pg.125]    [Pg.547]    [Pg.324]    [Pg.324]    [Pg.375]    [Pg.136]    [Pg.6]    [Pg.249]    [Pg.466]    [Pg.119]    [Pg.419]    [Pg.195]    [Pg.220]    [Pg.944]    [Pg.949]    [Pg.949]    [Pg.951]    [Pg.1227]    [Pg.147]    [Pg.387]    [Pg.14]    [Pg.15]    [Pg.128]    [Pg.27]   
See also in sourсe #XX -- [ Pg.84 ]

See also in sourсe #XX -- [ Pg.84 ]




SEARCH



© 2024 chempedia.info