Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yield behavior plastics mechanics

This paper rerports an investigation of the yield behavior of several amine and anhydride cured DGEBA resin systems. The Argon theory is used to assess the controlling molecular parameters from the experimental results. Such parameters are then compared with the known chemical structures of the resins. The mechanisms of plastic flow in thermoset polymers such as epoxies is demonstrated. [Pg.137]

Fracture Stress and Strain. Yielding and plastic deformation in the schematic representation of tensile deformation were associated with microfibrillation at the interface and stretching of the microfibrils. Because this representation was assumed to apply to both the core-shell and interconnected-interface models of compatibilization, the constrained-yielding approach was used without specific reference to the microstructure of the interface. In extending the discussion to fracture, however, it is useful to consider the interfacial-deformation mechanisms. Tensile deformation culminated in catastrophic fracture when the microfibrillated interface failed. This was inferred from the quasi-brittle fracture behavior of the uncompatibilized blend with VPS of 0.5, which indicated that the reduced load-bearing cross section after interfacial debonding could not support plastic deformation. Accordingly, the ultimate properties of the compatibilized blend depended on interfacial char-... [Pg.354]

A particular distinction between the mechanical behaviors of metals and plastics (URPs and RPs) is explained in order to avoid a possible confusion that could have arisen from the preliminary review. A typical stress-strain curve for a metal exhibits a linear elastic region followed by yield at the yield stress, plastic flow, and ultimately failures at the failure stress. Yield and failure occur at corresponding strains, and one could define yield and failure in terms of these critical strains. This is not common practice because it is simpler in many cases to restrict step (a) to a stress analysis alone. By comparison, it may appear strange that it was stated that plastics failure criteria are usually defined in terms of a critical strain (rather than stress) and, by comparison with the metals case, switching back from strain to stress may appear to be a minor operation. [Pg.649]

Perhaps the most dramatic exception to the perfectly elastic, perfectly plastic materials response is encountered in several brittle, refractory materials that show behaviors indicative of an isotropic compression state above their Hugoniot elastic limits. Upon yielding, these materials exhibit a loss of shear strength. Such behavior was first observed from piezoelectric response measurements of quartz by Neilson and Benedick [62N01]. The electrical response observations were later confirmed in mechanical response measurements of Waekerle [62W01] and Fowles [61F01]. [Pg.32]

As an example, for room-temperature applications most metals can be considered to be truly elastic. When stresses beyond the yield point are permitted in the design, permanent deformation is considered to be a function only of applied load and can be determined directly from the stress-strain diagram. The behavior of most plastics is much more dependent on the time of application of the load, the past history of loading, the current and past temperature cycles, and the environmental conditions. Ignorance of these conditions has resulted in the appearance on the market of plastic products that were improperly designed. Fortunately, product performance has been greatly improved as the amount of technical information on the mechanical properties of plastics has increased in the past half century. More importantly, designers have become more familiar with the behavior of plastics rather than... [Pg.22]

A plastic material is defined as one that does not undergo a permanent deformation until a certain yield stress has been exceeded. A perfectly plastic body showing no elasticity would have the stress-strain behavior depicted in Figure 8-15. Under influence of a small stress, no deformation occurs when the stress is increased, the material will suddenly start to flow at applied stress a(t (the yield stress). The material will then continue to flow at the same stress until this is removed the material retains its total deformation. In reality, few bodies are perfectly plastic rather, they are plasto-elastic or plasto-viscoelastic. The mechanical model used to represent a plastic body, also called a St. Venant body, is a friction element. The... [Pg.218]


See other pages where Yield behavior plastics mechanics is mentioned: [Pg.338]    [Pg.135]    [Pg.136]    [Pg.81]    [Pg.423]    [Pg.350]    [Pg.180]    [Pg.1205]    [Pg.177]    [Pg.395]    [Pg.9]    [Pg.574]    [Pg.74]    [Pg.2541]    [Pg.196]    [Pg.389]    [Pg.138]    [Pg.330]    [Pg.320]    [Pg.905]    [Pg.138]    [Pg.298]    [Pg.34]    [Pg.196]    [Pg.222]    [Pg.133]    [Pg.322]    [Pg.351]    [Pg.716]    [Pg.31]    [Pg.258]   
See also in sourсe #XX -- [ Pg.643 , Pg.644 , Pg.645 , Pg.646 , Pg.647 ]




SEARCH



Behavioral plasticity

Mechanical behavior

Mechanical behavior plastics

Plastic behavior

Plastic yield

Plastic yielding

Plasticity mechanics

Plasticizers mechanisms

Plastics yield behavior

Yield mechanism

© 2024 chempedia.info