Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wetting interfacial tension

A zero or near-zero contact angle is necessary otherwise results will be low. This was found to be the case with surfactant solutions where adsorption on the ring changed its wetting characteristics, and where liquid-liquid interfacial tensions were measured. In such cases a Teflon or polyethylene ring may be used [47]. When used to study monolayers, it may be necessary to know the increase in area at detachment, and some calculations of this are available [48]. Finally, an alternative method obtains y from the slope of the plot of W versus z, the elevation of the ring above the liquid surface [49]. [Pg.23]

Thus, to encourage wetting, 7sl and 7lv should be made as small as possible. This is done in practice by adding a surfactant to the liquid phase. The surfactant adsorbs to both the liquid-solid and liquid-vapor interfaces, lowering those interfacial tensions. Nonvolatile surfactants do not affect 7sv appreciably (see, however. Section X-7). It might be thought that it would be sufficient merely to lower ytv and that a rather small variety of additives would suffice to meet all needs. Actually it is equally if not more important that the surfactant lower 7sL> and each solid will make its own demands. [Pg.466]

Templeton obtained data of the following type for the rate of displacement of water in a 30-/im capillary by oil (n-cetane) (the capillary having previously been wet by water). The capillary was 10 cm long, and the driving pressure was 45 cm of water. When the meniscus was 2 cm from the oil end of the capillary, the velocity of motion of the meniscus was 3.6 x 10 cm/sec, and when the meniscus was 8 cm from the oil end, its velocity was 1 x 10 cm/sec. Water wet the capillary, and the water-oil interfacial tension was 30 dyn/cm. Calculate the apparent viscosities of the oil and the water. Assuming that both come out to be 0.9 of the actual bulk viscosities, calculate the thickness of the stagnant annular film of liquid in the capillary. [Pg.489]

By virtue of their simple stnicture, some properties of continuum models can be solved analytically in a mean field approxunation. The phase behaviour interfacial properties and the wetting properties have been explored. The effect of fluctuations is hrvestigated in Monte Carlo simulations as well as non-equilibrium phenomena (e.g., phase separation kinetics). Extensions of this one-order-parameter model are described in the review by Gompper and Schick [76]. A very interesting feature of tiiese models is that effective quantities of the interface—like the interfacial tension and the bending moduli—can be expressed as a fiinctional of the order parameter profiles across an interface [78]. These quantities can then be used as input for an even more coarse-grained description. [Pg.2381]

Dispersion is the process of wetting the surface of the metal, thereby penetrating the oil film. Surfactants can reduce the surface tension and interfacial tension of the cleaning solution at the metal—Hquid interface. As the cleaner undercuts and penetrates the oil, the cleaner breaks the oil into small droplets which then float to the surface. [Pg.220]

The influence of amphiphiles on interfacial properties interfacial tension, wetting behavior, dynamical aspects such as the question of how small amounts of surfactant influence the kinetics of phase separation. [Pg.636]

In supported liquid membranes, a chiral liquid is immobilized in the pores of a membrane by capillary and interfacial tension forces. The immobilized film can keep apart two miscible liquids that do not wet the porous membrane. Vaidya et al. [10] reported the effects of membrane type (structure and wettability) on the stability of solvents in the pores of the membrane. Examples of chiral separation by a supported liquid membrane are extraction of chiral ammonium cations by a supported (micro-porous polypropylene film) membrane [11] and the enantiomeric separation of propranolol (2) and bupranolol (3) by a nitrate membrane with a A/ -hexadecyl-L-hydroxy proline carrier [12]. [Pg.130]

Detergency may be defined as the removal of dirt from solid surfaces by surface chemical means [29], and may be related to several surfactant properties, including wetting and rewelting ability, foam generation, and surface and interfacial tension. It has long been observed... [Pg.770]

In addition to the environmentally benign attributes and the easily tunable solvent properties, other important characteristics such as low interfacial tension, excellent wetting behavior, and high diffusion coefficients also make SCCO2 a superior medium for the synthesis of nanoscale materials [2]. Previous works on w/c RMs showed that conventional hydrocarbon surfactants such as AOT do not form RMs in scCOi [3] AOT is completely insoluble in CO2 due to the poor miscibility of the alkyl chains with CO2, restricting the utilization of this medium. Recently, we had demonstrated that the commonly used surfactant,... [Pg.729]

By introducing surfactants, which lower the interfacial tension, it is possible to reduce the work necessary to deflocculate agglomerates. In liquid suspensions the introduction of an interfacial tension depressant facilitates wetting of the solid by the liquid and the displacement of adsorbed gases from the solid surface. Certain solids have adsorbed films whose adhesional forces are so great that they resist all mechanical efforts to displace them. Upon the addition of a surfactant, the Aims are displaced and a solid-liquid interface is achieved (1). [Pg.85]

The wetting (contact) angle method is used for solid surfaces. If a gas bubble sticks to a metal surface, then the individual interfacial tensions are distributed as shown in Fig. 4.11. It holds at equilibrium that... [Pg.244]

Fig. 4.11 Interfacial tensions between a solid, liquid and gaseous phase, ygs, y,s and ygl. 6 denotes the wetting angle... Fig. 4.11 Interfacial tensions between a solid, liquid and gaseous phase, ygs, y,s and ygl. 6 denotes the wetting angle...
Figure 2 is a representation of the force balance on a Wilhelmy plate that has gone through one phase and has been wetted by a second phase. The three interfacial tensions are related to the contact angle (measured through phase 2) by the familiar Young equation... [Pg.561]

The computer interface system lends itself well to the determination of interfacial tension and contact angles using Equation 3 and the technique described by Pike and Thakkar for Wilhelmy plate type experiments (20). Contact angles for crude oil/brine systems using the dynamic Wilhelmy plate technique have been determined by this technique and all three of the wetting cycles described above have been observed in various crude oil/brine systems (21) (Teeters, D. Wilson, J. F. Andersen, M. A. Thomas, D. C. J. Colloid Interface Sci., 1988, 126, in press). The dynamic Wilhelmy plate device also addresses other aspects of wetting behavior pertinent to petroleum reservoirs. [Pg.564]


See other pages where Wetting interfacial tension is mentioned: [Pg.122]    [Pg.3]    [Pg.465]    [Pg.467]    [Pg.469]    [Pg.489]    [Pg.2374]    [Pg.70]    [Pg.432]    [Pg.235]    [Pg.420]    [Pg.306]    [Pg.307]    [Pg.1476]    [Pg.1810]    [Pg.2003]    [Pg.357]    [Pg.659]    [Pg.519]    [Pg.770]    [Pg.78]    [Pg.128]    [Pg.532]    [Pg.147]    [Pg.300]    [Pg.290]    [Pg.87]    [Pg.216]    [Pg.252]    [Pg.190]    [Pg.249]    [Pg.250]    [Pg.250]    [Pg.262]    [Pg.697]    [Pg.43]   
See also in sourсe #XX -- [ Pg.60 , Pg.122 , Pg.124 , Pg.139 ]




SEARCH



Balance of Interfacial Tensions The Wetting Approach

Interfacial Tension and Wetting

Interfacial tension

Interfacial tension wetting thermodynamics

Interfacial tensions, contact angle and wetting

Interfacial wetting

Wetting tension

© 2024 chempedia.info