Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wave function electron nuclear dynamics

Density functional theory, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems, 404-411 Density operator, direct molecular dynamics, adiabatic systems, 375-377 Derivative couplings conical intersections, 569-570 direct molecular dynamics, vibronic coupling, conical intersections, 386-389 Determinantal wave function, electron nuclear dynamics (END), molecular systems, final-state analysis, 342-349 Diabatic representation ... [Pg.74]

ABBA molecules, 631-633 HCCS radical, 633-640 perturbative handling, 641-646 theoretical principles, 625-633 Hamiltonian equation, 626-628 vibronic problem, 628-631 Thouless determinantal wave function, electron nuclear dynamics (END) ... [Pg.100]

Electron Nuclear Dynamics (48) departs from a variational form where the state vector is both explicitly and implicitly time-dependent. A coherent state formulation for electron and nuclear motion is given and the relevant parameters are determined as functions of time from the Euler equations that define the stationary point of the functional. Yngve and his group have currently implemented the method for a determinantal electronic wave function and products of wave packets for the nuclei in the limit of zero width, a "classical" limit. Results are coming forth protons on methane (49), diatoms in laser fields (50), protons on water (51), and charge transfer (52) between oxygen and protons. [Pg.13]

Wigner rotation/adiabatic-to-diabatic transformation matrices, 92 Electronic structure theory, electron nuclear dynamics (END) structure and properties, 326-327 theoretical background, 324-325 time-dependent variational principle (TDVP), general nuclear dynamics, 334-337 Electronic wave function, permutational symmetry, 680-682 Electron nuclear dynamics (END) degenerate states chemistry, xii-xiii direct molecular dynamics, structure and properties, 327 molecular systems, 337-351 final-state analysis, 342-349 intramolecular electron transfer,... [Pg.76]

Electron-Nuclear Dynamics (END) method, " where both the orbitals describing the electronic wave function and the nuclear degrees of freedom are described by expansion into a Gaussian basis set, which moves along with the nuclei. Such an approach in principle allows a complete solution of the combined nuclear-electron Schrodinger equation without having to invoke approximations beyond those imposed by the basis set. Inclusion of the electronic parameters in the dynamics, however, means that the fundamental time step is short, and this results in a high computational cost for even quite short simulations and simple wave functions. [Pg.463]

If now the nuclear coordinates are regarded as dynamical variables, rather than parameters, then in the vicinity of the intersection point, the energy eigenfunction, which is a combined electronic-nuclear wave function, will contain a superposition of the two adiabatic, superposition states, with nuclear... [Pg.106]

The time dependence of the molecular wave function is carried by the wave function parameters, which assume the role of dynamical variables [19,20]. Therefore the choice of parameterization of the wave functions for electronic and nuclear degrees of freedom becomes important. Parameter sets that exhibit continuity and nonredundancy are sought and in this connection the theory of generalized coherent states has proven useful [21]. Typical parameters include molecular orbital coefficients, expansion coefficients of a multiconfigurational wave function, and average nuclear positions and momenta. We write... [Pg.224]

As shown above in Section UFA, the use of wavepacket dynamics to study non-adiabatic systems is a trivial extension of the methods described for adiabatic systems in Section H E. The equations of motion have the same form, but now there is a wavepacket for each electronic state. The motions of these packets are then coupled by the non-adiabatic terms in the Hamiltonian operator matrix elements. In contrast, the methods in Section II that use trajectories in phase space to represent the time evolution of the nuclear wave function cannot be... [Pg.288]

Both the BO dynamics and Gaussian wavepacket methods described above in Section n separate the nuclear and electronic motion at the outset, and use the concept of potential energy surfaces. In what is generally known as the Ehrenfest dynamics method, the picture is still of semiclassical nuclei and quantum mechanical electrons, but in a fundamentally different approach the electronic wave function is propagated at the same time as the pseudoparticles. These are driven by standard classical equations of motion, with the force provided by an instantaneous potential energy function... [Pg.290]

In this chapter, we discussed the permutational symmetry properties of the total molecular wave function and its various components under the exchange of identical particles. We started by noting that most nuclear dynamics treatments carried out so far neglect the interactions between the nuclear spin and the other nuclear and electronic degrees of freedom in the system Hamiltonian. Due to... [Pg.609]

Use of the Born-Oppenheimer approximation is implicit for any many-body problem involving electrons and nuclei as it allows us to separate electronic and nuclear coordinates in many-body wave function. Because of the large difference between electronic and ionic masses, the nuclei can be treated as an adiabatic background for instantaneous motion of electrons. So with this adiabatic approximation the many-body problem is reduced to the solution of the dynamics of the electrons in some frozen-in configuration of the nuclei. However, the total energy calculations are still impossible without making further simplifications and approximations. [Pg.19]


See other pages where Wave function electron nuclear dynamics is mentioned: [Pg.71]    [Pg.71]    [Pg.67]    [Pg.97]    [Pg.51]    [Pg.165]    [Pg.106]    [Pg.206]    [Pg.253]    [Pg.254]    [Pg.261]    [Pg.4]    [Pg.32]    [Pg.40]    [Pg.106]    [Pg.251]    [Pg.261]    [Pg.554]    [Pg.560]    [Pg.569]    [Pg.590]    [Pg.610]    [Pg.770]    [Pg.397]    [Pg.235]    [Pg.388]   


SEARCH



Dynamic wave

Electron dynamics

Electron functionalization

Electron nuclear dynamics

Electronic wave function

Nuclear dynamics

Nuclear dynamics electronic wave function

Nuclear dynamics electronic wave function

Waves electrons

© 2024 chempedia.info