Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water vapor, radiation

CA 46, 4798 (1952)(Line-reversal technique in detn of temp of gun flash is discussed. Monochromator is used to isolate Na, K, water-vapor radiation at 0.589, 0.77 0.942 microns resp. Peak temp values detd for external gaseous explns commonly known as secondary flash associated with firing a gun)... [Pg.480]

In the presence of water vapor, oxygen atoms formed by uv radiation react to form hydroxyl radicals (35), which can destroy ozone catalyticaHy. [Pg.491]

Many factors affect the mechanisms and kinetics of sorption and transport processes. For instance, differences in the chemical stmcture and properties, ie, ionizahility, solubiUty in water, vapor pressure, and polarity, between pesticides affect their behavior in the environment through effects on sorption and transport processes. Differences in soil properties, ie, pH and percentage of organic carbon and clay contents, and soil conditions, ie, moisture content and landscape position climatic conditions, ie, temperature, precipitation, and radiation and cultural practices, ie, crop and tillage, can all modify the behavior of the pesticide in soils. Persistence of a pesticide in soil is a consequence of a complex interaction of processes. Because the persistence of a pesticide can govern its availabiUty and efficacy for pest control, as weU as its potential for adverse environmental impacts, knowledge of the basic processes is necessary if the benefits of the pesticide ate to be maximized. [Pg.219]

Surface modification of a contact lens can be grouped into physical and chemical types of treatment. Physical treatments include plasma treatments with water vapor (siUcone lens) and oxygen (176) and plasma polymerization for which the material surface is exposed to the plasma in the presence of a reactive monomer (177). Surfaces are also altered with exposure to uv radiation (178) or bombardment with oxides of nitrogen (179). Ion implantation (qv) of RGP plastics (180) can greatiy increase the surface hardness and hence the scratch resistance without seriously affecting the transmission of light. [Pg.107]

Radiation differs from conduction and convection not only in mathematical structure but in its much higher sensitivity to temperature. It is of dominating importance in furnaces because of their temperature, and in ciyogenic insulation because of the vacuum existing between particles. The temperature at which it accounts for roughly half of the total heat loss from a surface in air depends on such factors as surface emissivity and the convection coefficient. For pipes in free convection, this is room temperature for fine wires of low emissivity it is above red heat. Gases at combustion-chamber temperatures lose more than 90 percent of their energy by radiation from the carbon dioxide, water vapor, and particulate matter. [Pg.569]

C y = correction fac tor for pressure broadening of radiation from water vapor. d = particle diameter. [Pg.570]

The radiation from a flame is due to radiation from burning soot particles of microscopic andsubmicroscopic dimensions, from suspended larger particles of coal, coke, or ash, and from the water vapor and carbon dioxide in the hot gaseous combustion products. The contribution of radiation emitted by the combustion process itself, so-called chemiluminescence, is relatively neghgible. Common to these problems is the effect of the shape of the emitting volume on the radiative fliix this is considered first. [Pg.578]

Gaseous Combustion Products Radiation from water vapor and carbon dioxide occurs in spectral bands in the infrared. In magnitude it overshadows convection at furnace temperatures. [Pg.579]

Water Vapor The contribution to the emissivity of a gas containing H9O depends on Tc andp L and on total pressure P and partial pressure p . Table 5-8 gives constants for use in evaluating . Allowance for departure from the special pressure conditions is made by multiplying by a correction factor C read from Fig. 5-21 as a function of (p + P) and p ,L. The absorptivity 0t of water vapor for blackbody radiation is evaluated from Table 5-8 but at T instead of Tc and at p LT /Tc instead of p, h. Multiply by (Tc/Ti)° . ... [Pg.579]

The correction factor C still applies. Spectral data for water vapor, tabulated for 371 wavelength intervals from 1 to 40 Im, are also available [Ferriso, Ludwig, and Thompson, J. Quant. Spectm.s. Radiat. Tran.sfer, 6, 241-273 (1966)]. The principal emission is in bands at about 2.55 to 2.84, 5.6 to 7.6, and 12 to 25 jlm. [Pg.579]

Carbon Dioxide—Water-Vapor Mixtures When these gases are present together, the total radiation due to both is somewhat less than the sum of the separately calculated effects, because each gas is somewhat opaque to radiation from the other in the wavelength regions 2.7 and 15 [Lm. [Pg.579]

Combined Soot W2O, and CO2 Radiation The spectral overlap of H9O and CO9 radiation has been taken into account by the constants for obtaining Ec- Additional overlap occurs when soot emissivity , is added. If the emission bands of water vapor and CO9 were randomly placed in the spectrum and soot radiation were gray, the combined emissivity would be Eg phis , minus an overlap correction g s- But monochromatic soot emissivity is higher the shorter the wavelength, and in a highly sooted flame at 1500 K half the soot emission hes below 2.5 [Lm where H9O and CO9 emission is negligible. Then the correction g s must be reduced, and the following is recommended ... [Pg.582]

Example 7 Radiation in Gases Flue gas containing 6 percent carbon dioxide and 11 percent water vapor by volume (wet basis) flows through the convection bank of an oil tube stiU consisting of rows of 0.102-m (4-in) tubes on 0.203-m (8-in) centers, nine 7.62-m (25-ft) tubes in a row, the rows staggered to put the tubes on equilateral triangular centers. The flue gas enters at 871°C (1144 K, 1600°F) and leaves at 538°C (811 K, 1000°F). The oil flows in a countercurrent direction to the gas and rises from 316 to 427°C (600 to 800°F). Tube surface emissivity is 0.8. What is the average heat-input rate, due to gas radiation alone, per square meter of external tube area ... [Pg.582]

A rate balance between evaporation and heat transfer when radiation occurs may be modified by means of the psychrometric ratio for air-water vapor mixtures to give ... [Pg.1191]

The principal components of atmospheric chemical processes are hydrocarbons, oxides of nitrogen, oxides of sulfur, oxygenated hydrocarbons, ozone, and free radical intermediates. Solar radiation plays a crucial role in the generation of free radicals, whereas water vapor and temperature can influence particular chemical pathways. Table 12-4 lists a few of the components of each of these classes. Although more extensive tabulations may be found in "Atmospheric Chemical Compounds" (8), those listed in... [Pg.169]

It is advantageous to use a low-retentivity carbon to enable the adsorbate to be stripped out easily. When empirical data are not available, the following heat requirements have to be taken into consideration (1) heat to the adsorbent and vessel, (2) heat of adsorption and specific heat of adsorbate leaving the adsorbent, (3) latent and specific heat of water vapor accompanying the adsorbate, (4) heat in condensed, indirect steam, (5) radiation and convection heat losses. [Pg.294]

Monthly evaporation estimates can be made using the Kohler-Nordenson-Fox equation with a pan coefficient of 0.7. The Kohler-Nordenson-Fox equation describes evaporation as the combination of water loss due to radiation heat energy and the aerodynamic removal of water vapor from a saturated surface. The general form for the combination equation is ... [Pg.548]

Atmospheric attenuation is the consequence of absorption of radiation by the medium present between emitter and receiver. For thermal radiation, atmospheric absorption is primarily due to water vapor and, to a lesser extent, to carbon dioxide. Absorption also depends on radiation wavelength, and consequently, on hie temperature. Duiser approximates transmissivity as... [Pg.63]

About 51 percent of solar energy incident at the top of the atmosphere reaches Earth s surface. Energetic solar ultraviolet radiation affects the chemistry of the atmosphere, especially the stratosphere where, through a series of photochemical reactions, it is responsible for the creation of ozone (O,). Ozone in the stratosphere absorbs most of the short-wave solar ultraviolet (UV) radiation, and some long-wave infrared radiation. Water vapor and carbon dioxide in the troposphere also absorb infrared radiation. [Pg.86]

Coping with the greenhouse effect is a vei-y difficult sociopolitical problem. A greenhouse effect existed on Earth long before the Industrial Revolution. Had it not. Earth s surface would be much colder than it is now. The introduction of gases absorbing infrared radiation only enhances the greenhouse effect. Carbon dioxide is not the only gas of importance water vapor and methane, for exam-... [Pg.1224]

Heat transfer in the furnace is mainly by radiation, from the incandescent particles in the flame and from hot radiating gases such as carbon dioxide and water vapor. The detailed theoretical prediction of overall radiation exchange is complicated by a number of factors such as carbon particle and dust distributions, and temperature variations in three-dimensional mixing. This is overcome by the use of simplified mathematical models or empirical relationships in various fields of application. [Pg.347]

The density of the atmosphere varies greatly from place to place, as does its composition and temperature. The average composition of dry air (air from which water vapor has been removed) is shown in Table 4.4. One reason for the nonuniformity of air is the effect of solar radiation, which causes different chemical reactions at different altitudes. The density of air also varies with altitude. For example, the air outside an airplane cruising at 10 km is only 25% as dense as air at sea level. [Pg.275]


See other pages where Water vapor, radiation is mentioned: [Pg.151]    [Pg.480]    [Pg.123]    [Pg.151]    [Pg.480]    [Pg.123]    [Pg.378]    [Pg.371]    [Pg.204]    [Pg.253]    [Pg.335]    [Pg.15]    [Pg.15]    [Pg.765]    [Pg.156]    [Pg.157]    [Pg.249]    [Pg.317]    [Pg.1141]    [Pg.1110]    [Pg.63]    [Pg.188]    [Pg.799]    [Pg.109]    [Pg.730]    [Pg.730]    [Pg.111]    [Pg.125]    [Pg.155]   
See also in sourсe #XX -- [ Pg.7 , Pg.46 ]




SEARCH



Water vapor

Water vaporization

© 2024 chempedia.info