Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water valence

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

Mono-, di-, and trivalent bromides and iodides may be made by methods similar to the chlorides. The lower valence salts also disproportionate in water. Indium trifluoride [7783-52-0] InF., is sparingly soluble in water. It forms an ammonium double salt, SNH F TnF. [15273-84-4] which decomposes on heating to indium nitride [25617-98-5] InN. [Pg.81]

Hydroxide. Freshly precipitated cerous hydroxide [15785-09-8] Ce(OH)2, is readily oxidized by air or oxygenated water, through poorly defined violet-tinged mixed valence intermediates, to the tetravalent buff colored ceric hydroxide [12014-56-17, Ce(OH)4. The precipitate, which can prove difficult to filter, is amorphous and on drying converts to hydrated ceric oxide, Ce02 2H20. This commercial material, cerium hydrate [23322-64-7] behaves essentially as a reactive cerium oxide. [Pg.367]

Cobalt(II) chloride hexahydrate [7791-13-1], C0CI2 6H20 is a deep red monoclinic crystalline material that deflquesces. It is prepared by reaction of hydrochloric acid with the metal, simple oxide, mixed valence oxides, carbonate, or hydroxide. A high purity cobalt chloride has also been prepared electrolyticaHy (4). The chloride is very soluble in water and alcohols. The dehydration of the hexahydrate occurs stepwise ... [Pg.377]

Cobalt(II) nitrate hexahydrate [10026-22-9], Co(N02)2 6H20, is a dark reddish to reddish brown, monoclinic crystalline material containing about 20% cobalt. It has a high solubiUty in water and solutions containing 14 or 15% cobalt are commonly used in commerce. Cobalt nitrate can be prepared by dissolution of the simple oxide or carbonate in nitric acid, but more often it is produced by direct oxidation of the metal with nitric acid. Dissolution of cobalt(III) and mixed valence oxides in nitric acid occurs in the presence of formic acid (5). The ttihydrate forms at 55°C from a melt of the hexahydrate. The nitrate is used in electronics as an additive in nickel—ca dmium batteries (qv), in ceramics (qv), and in the production of vitamin B 2 [68-19-9] (see Vitamins, VITAMIN B22)-... [Pg.377]

Cobalt(Il) dicobalt(Ill) tetroxide [1308-06-17, Co O, is a black cubic crystalline material containing about 72% cobalt. It is prepared by oxidation of cobalt metal at temperatures below 900°C or by pyrolysis in air of cobalt salts, usually the nitrate or chloride. The mixed valence oxide is insoluble in water and organic solvents and only partially soluble in mineral acids. Complete solubiUty can be effected by dissolution in acids under reducing conditions. It is used in enamels, semiconductors, and grinding wheels. Both oxides adsorb molecular oxygen at room temperatures. [Pg.378]

The optical activity of quartz and certain other materials was first discovered by Jean-Baptiste Biot in 1815 in France, and in 1848 a young chemist in Paris named Louis Pasteur made a related and remarkable discovery. Pasteur noticed that preparations of optically inactive sodium ammonium tartrate contained two visibly different kinds of crystals that were mirror images of each other. Pasteur carefully separated the two types of crystals, dissolved them each in water, and found that each solution was optically active. Even more intriguing, the specific rotations of these two solutions were equal in magnitude and of opposite sign. Because these differences in optical rotation were apparent properties of the dissolved molecules, Pasteur eventually proposed that the molecules themselves were mirror images of each other, just like their respective crystals. Based on this and other related evidence, in 1847 van t Hoff and LeBel proposed the tetrahedral arrangement of valence bonds to carbon. [Pg.97]

Ruthenium and osmium are decidedly less noble than the other four metals of the platinum group. Both exist in numerous valency states and very readily form complexes. Ruthenium is not attacked by water or non-complexing acids, but is easily corroded by oxidising alkaline solutions, such as peroxides and alkaline hypochlorites. [Pg.933]

A Bronsted-Lowry acid is a substance that donates a proton (H+), and a Bronsted-Lowry base is a substance that accepts a proton. (The name proton is often used as a synonym for hydrogen ion, H+, because loss of the valence electron from a neutral hydrogen atom leaves only the hydrogen nucleus— a proton.) When gaseous hydrogen chloride dissolves in water, for example, a polar HC1 molecule acts as an acid and donates a proton, while a water molecule acts as a base and accepts the proton, yielding hydronium ion (H30+) and chloride ion (Cl-). [Pg.49]


See other pages where Water valence is mentioned: [Pg.123]    [Pg.924]    [Pg.123]    [Pg.924]    [Pg.2749]    [Pg.145]    [Pg.632]    [Pg.1014]    [Pg.203]    [Pg.382]    [Pg.316]    [Pg.11]    [Pg.188]    [Pg.274]    [Pg.159]    [Pg.80]    [Pg.82]    [Pg.443]    [Pg.446]    [Pg.52]    [Pg.53]    [Pg.412]    [Pg.340]    [Pg.472]    [Pg.400]    [Pg.84]    [Pg.381]    [Pg.121]    [Pg.1506]    [Pg.1512]    [Pg.127]    [Pg.24]    [Pg.399]    [Pg.241]    [Pg.1008]    [Pg.1015]    [Pg.1154]    [Pg.1181]    [Pg.160]    [Pg.80]    [Pg.128]    [Pg.820]    [Pg.1227]    [Pg.221]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Water valence bonding

Water valence shell electron pair

Water valence state

© 2024 chempedia.info