Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water resistance also

In recent years the availability of several aromatic polycarboxylic acids has been exploited in specialty alkyd resin preparations [57, 58]. For example, trimellitic acid-based alkyds are used in alkyd-melamine enamels and acrylic lacquers [57]. Isophthalic acid can be used alone or in conjunction with trimellitic anhydride or phthalic anhydride [59]. Pyromellitic acid and pyromellitic anhydride have also been suggested as partial replacements for phthalic anhydride in long or short oil alkyds to give more water-resistant (also caustic- and gasoline-resistant) coatings [60]. [Pg.177]

This list is by no means exhaustive, there being an almost Hmitless choice of surfactants or combinations of surfactants available. From the aspect of particle stabilization during the emulsification process, and even to a large extent nucleation, the choice of surfactant is usually not too critical. By far the biggest factor in the choice of surfactant is the application performance of the final product Unfortunately as a general rule, the presence of surfactant in the final dry polymer causes reduced water resistance. Also, there is a tendency for surfactant molecules to diffuse to the polymer/air or polymer/substrate interface, where deleterious effects (cloudiness at the surface, loss of tack, etc.) are often caused. This again demonstrates the compromise often necessary in emulsion polymer synthesis. [Pg.30]

Both melamine—formaldehyde (MF) and resorcinol—formaldehyde (RF) foUowed the eadier developments of phenol—, and urea—formaldehyde. Melamine has a more complex stmcture than urea and is also more expensive. Melamine-base resins requite heat to cure, produce colorless gluelines, and are much more water-resistant than urea resins but stiU are not quite waterproof. Because of melamine s similarity to urea, it is often used in fairly small amounts with urea to produce melamine—urea—formaldehyde (MUF) resins. Thus, the improved characteristics of melamine can be combined with the economy of urea to provide an improved adhesive at a moderate increase in cost. The improvement is roughly proportional to the amount of melamine used the range of addition may be from 5 to 35%, with 5—10% most common. [Pg.378]

The primary adhesive used ia hardwood plywood is urea—formaldehyde (UF) mixed with wheat flour as an extender to improve spreadabiUty, reduce penetration, and provide dry-out resistance. A catalyst may also be added to UF resias to speed the cure or to cause the UF to cure. Scavengers also may be added to reduce formaldehyde emissions from finished panels. If more water-resistance is requited using a UF bond, small amounts of melamine maybe added, producing a melamine—urea—formaldehyde (MUF) adhesive. [Pg.382]

Pentaerythritol in rosin ester form is used in hot-melt adhesive formulations, especially ethylene—vinyl acetate (EVA) copolymers, as a tackifier. Polyethers of pentaerythritol or trim ethyl ol eth an e are also used in EVA and polyurethane adhesives, which exhibit excellent bond strength and water resistance. The adhesives maybe available as EVA melts or dispersions (90,91) or as thixotropic, one-package, curable polyurethanes (92). Pentaerythritol spko ortho esters have been used in epoxy resin adhesives (93). The EVA adhesives are especially suitable for cellulose (paper, etc) bonding. [Pg.466]

The greatest industrial consumption of monobasic aluminum acetate has been as a solution in the preparation of red color lakes for the dyeing of cotton. Formation of a water-resistant coating on fabrics, paper, leather, or other materials is also an important appHcation. In this process, for example, cloth is dipped into a solution of water-soluble soap, then into the aluminum salt solution, forming an insoluble, water-resistant aluminum soap coating on the fiber surfaces (10). [Pg.142]

Nitrile mbber compounds have good abrasion and water resistance. They can have compression set properties as low as 25% with the selection of a proper cure system. The temperature range for the elastomers is from —30 to 125°C. The compounds are also plasticized using polar ester plasticizers. The main dilemma is the selection of a heat-stable, nonfugitive plasticizer that also gives good low temperature properties. [Pg.232]

Many different combinations of surfactant and protective coUoid are used in emulsion polymerizations of vinyl acetate as stabilizers. The properties of the emulsion and the polymeric film depend to a large extent on the identity and quantity of the stabilizers. The choice of stabilizer affects the mean and distribution of particle size which affects the rheology and film formation. The stabilizer system also impacts the stabiUty of the emulsion to mechanical shear, temperature change, and compounding. Characteristics of the coalesced resin affected by the stabilizer include tack, smoothness, opacity, water resistance, and film strength (41,42). [Pg.464]

Copolymers wet and adhere well to nonporous surfaces, such as plastics and metals. They form soft, flexible films, in contrast to the tough, horny films formed by homopolymers, and are more water-resistant. As the ratio of comonomer to vinyl acetate increases, the variety of plastics to which the copolymer adheres also increases. Comonomers containing functional groups often adhere to specific surfaces for example, carboxyl containing polymers adhere well to metals. [Pg.469]

In contrast to other polymers the resistance to water permeation is low due to the hydrolysis of the poly(vinyl acetate) (163,164). Ethylene copolymers have been developed which have improved water resistance and waterproofness. The polymer can be used in the latex form or in a spray-dried form which can be preblended in with the cement (qv) in the proper proportion. The compressive and tensile strength of concrete is improved by addition of PVAc emulsions to the water before mixing. A polymer-soHds-to-total-soHds ratio of ca 10 90 is best. The emulsions also aid adhesion between new and old concrete when patching or resurfacing. [Pg.471]

Waterproof Finishes. Waterproofing results from coating a fabric and filling the pores with film-forming material such as varnish, mbber, nitroceUulose, wax, tar, or plastic. The materials may be appHed as hot melts, eg, waxes or some polymers, as solvent solutions, or as aqueous latexes. The continuity of the film provides the water resistance. Except for tents, tarpauHns, and covers, coated fabrics have been largely replaced by plastics, and by fabrics treated with water and oU repeUents that do not reduce permeabUity to air and water vapor. Eabrics are also commonly laminated to films, such that the total stmeture is waterproof (15), or in some cases water-resistant but breathable (16). [Pg.307]

Asphalt (bitumen) also occurs in various oil sand (also called tar sand) deposits which occur widely scattered through the world (17) and the bitumen is available by means of various extraction technologies. A review of the properties and character of the bitumen (18) suggests that, when used as an asphaltic binder, the bitumen compares favorably with specification-grade petroleum asphalts and may have superior aging characteristics and produce more water-resistant paving mixtures than the typical petroleum asphalts. [Pg.360]

Amino resins are lighter in color and have better tensile strength and hardness than phenoHc resins their impact strength and heat and water resistance are less than those of phenoHcs. The melamine—formaldehyde resins are harder and have better heat and moisture resistance than the urea resins, but they are also more expensive. The physical properties of the melamine—formaldehyde laminates are Hsted in Table 1. [Pg.328]


See other pages where Water resistance also is mentioned: [Pg.143]    [Pg.146]    [Pg.143]    [Pg.146]    [Pg.285]    [Pg.378]    [Pg.390]    [Pg.392]    [Pg.234]    [Pg.339]    [Pg.312]    [Pg.452]    [Pg.358]    [Pg.28]    [Pg.85]    [Pg.247]    [Pg.2]    [Pg.493]    [Pg.13]    [Pg.313]    [Pg.321]    [Pg.35]    [Pg.95]    [Pg.333]    [Pg.140]    [Pg.13]    [Pg.24]    [Pg.72]    [Pg.291]    [Pg.468]    [Pg.469]    [Pg.470]    [Pg.477]    [Pg.488]    [Pg.199]    [Pg.309]    [Pg.310]    [Pg.311]    [Pg.369]   


SEARCH



Water resistance

Water resistivity

© 2024 chempedia.info