Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water dissolved copper

Then, while the diazonium solution is standing in ice-water, dissolve 55 g. of powdered copper sulphate (CuS04,5Ha0) in 200 ml. of water contained in a 1500 ml. flat-bottomed flask, for which a steam-distillation fitting is available for subsequent use. Place a thermometer in the copper sulphate solution and warm the latter to 60-65 . Now cautiously add a solution of 60 g. of powdered potassium cyanide in too ml. of water to the copper... [Pg.191]

The alloy aluminium-4 wt% copper forms the basis of the 2000 series (Duralumin, or Dural for short). It melts at about 650°C. At 500°C, solid A1 dissolves as much as 4 wt% of Cu completely. At 20°C its equilibrium solubility is only 0.1 wt% Cu. If the material is slowly cooled from 500°C to 20°C, 4 wt% - 0.1 wt% = 3.9 wt% copper separates out from the aluminium as large lumps of a new phase not pure copper, but of the compound CuAlj. If, instead, the material is quenched (cooled very rapidly, often by dropping it into cold water) from 500°C to 20°C, there is not time for the dissolved copper atoms to move together, by diffusion, to form CuAlj, and the alloy remains a solid solution. [Pg.324]

Chemical Reactivity - Reactivity with Water Dissolves with mild heat effect Reactivity with Common Materials Corrosive to copper and galvanized surfaces Stability During Transport Stable Neutralizing Agents for Acids and Caustics Dilute with water Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.15]

Heat exchangers that utilize copper coils are potential candidates for galvanic corrosion due to dissolved copper salts interacting with the galvanized steel shell. This problem can be avoided by nickel plating the coils. The coils then can be separated from direct contact with the vessel via insulation. Also, it is preferable to conduct the water on the tube side of heat exchangers. [Pg.42]

Small variations in solution composition may also affect the value of any critical velocity. In laboratory tests using recirculating artificial sea-water the presence of dissolved copper from copper alloy test-pieces has been shown to affect the value of the critical velocity for such materials . [Pg.996]

Some naturally soft mains waters may be unsuitable because they contain dissolved copper ions that could lead to aluminum failure. Poor buffer control can also cause attack. [Pg.582]

Equilibrium complexation constants for Cu reactions with natural organic matter and the details of Cu speciation are bound to remain somewhat uncertain, since the composition of the complexing molecules varies from site to site. What is not in dispute is that the fraction of dissolved copper present as free aquo Cu is probably very small in any natural water. In extremely pristine waters, hydroxide and carbonate complexes may dominate, but organic complexes usually dominate in waters containing more than a few tenths of a mg/L organic carbon. [Pg.413]

Sunda and Hanson [247] have used ligand competition techniques for the analysis of free copper (II) in seawater. This work demonstrated that only 0.02 -2% of dissolved copper (II) is accounted for by inorganic species. (i.e., Cu2+, CuC03, Cu(OH)+, CuCl+, etc.) the remainder is associated with organic complexes. Clearly, the speciation of copper (II) in seawater is markedly different from that in fresh water. [Pg.169]

Batley [28] examined the techniques available for the in situ electrodeposition of lead and cadmium in estuary water. These included anodic stripping voltammetry at a glass carbon thin film electrode and the hanging drop mercury electrode in the presence of oxygen and in situ electrodeposition on mercury coated graphite tubes. Batley [28] found that in situ deposition of lead and cadmium on a mercury coated tube was the more versatile technique. The mercury film, deposited in the laboratory, is stable on the dried tubes which are used later for field electrodeposition. The deposited metals were then determined by electrothermal atomic absorption spectrometry, Hasle and Abdullah [29] used differential pulse anodic stripping voltammetry in speciation studies on dissolved copper, lead, and cadmium in coastal sea water. [Pg.338]

Copper concentrations in sediment interstitial pore waters correlate positively with concentrations of dissolved copper in the overlying water column and are now used to predict the toxicity of test sediments to freshwater amphipods (Ankley et al. 1993). Sediment-bound copper is available to deposit-feeding clams, especially from relatively uncontaminated anoxic sediments of low pH (Bryan and Langston 1992). The bioavailability of copper from marine sediments, as judged by increased copper in sediment interstitial waters, is altered by increased acid volatile sulfide (AYS)... [Pg.132]

METEX [Metal extraction] A process for extracting heavy metals from industrial waste waters by adsorption on activated sludge under anaerobic conditions. It is operated in an up-flow, cylindrical reactor with a conical separation zone at the top. Developed by Linde, originally for removing dissolved copper from winemaking wastes. First commercialized in 1987. [Pg.176]


See other pages where Water dissolved copper is mentioned: [Pg.547]    [Pg.547]    [Pg.505]    [Pg.165]    [Pg.195]    [Pg.1185]    [Pg.4]    [Pg.413]    [Pg.413]    [Pg.415]    [Pg.652]    [Pg.316]    [Pg.341]    [Pg.132]    [Pg.167]    [Pg.214]    [Pg.162]    [Pg.252]    [Pg.40]    [Pg.298]    [Pg.276]    [Pg.132]    [Pg.167]    [Pg.214]    [Pg.287]    [Pg.397]    [Pg.440]    [Pg.244]    [Pg.343]    [Pg.344]    [Pg.412]    [Pg.665]    [Pg.868]    [Pg.877]    [Pg.542]    [Pg.411]   
See also in sourсe #XX -- [ Pg.202 ]




SEARCH



Water dissolve

© 2024 chempedia.info