Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water cobalt complex

OC H8, Furan, tetrahydro-, hafnium, niobium, scandium, titanium, vanadium, and zirconium complexes, 21 135-139 0H2, Water, cobalt complex, 21 123-126... [Pg.213]

Yong et al. developed a cobalt-catalyzed [2+2+2] cyclotrimerization of terminal alkynes in good yields in aqueous media (80/20 mixture of water and ethanol) at room temperature. A cyclopentadienyl cobalt complex bearing a pendant phosphine ligand was used as a catalyst (Eq. 4.59). The cyclotrimerization of internal alkynes resulted in lower yields and required an elevated temperature, most likely due to steric interactions. For example, cyclotrimerization of 2,5-dimethyl-3-hexyne gave hexaisopropylbenzene in 51% yield and the reaction of diphenylethyne resulted in a 47% yield of hexaphenylbenzene.112... [Pg.131]

A number of metal porphyrins have been examined as electrocatalysts for H20 reduction to H2. Cobalt complexes of water soluble masri-tetrakis(7V-methylpyridinium-4-yl)porphyrin chloride, meso-tetrakis(4-pyridyl)porphyrin, and mam-tetrakis(A,A,A-trimethylamlinium-4-yl)porphyrin chloride have been shown to catalyze H2 production via controlled potential electrolysis at relatively low overpotential (—0.95 V vs. SCE at Hg pool in 0.1 M in fluoroacetic acid), with nearly 100% current efficiency.12 Since the electrode kinetics appeared to be dominated by porphyrin adsorption at the electrode surface, H2-evolution catalysts have been examined at Co-porphyrin films on electrode surfaces.13,14 These catalytic systems appeared to be limited by slow electron transfer or poor stability.13 However, CoTPP incorporated into a Nafion membrane coated on a Pt electrode shows high activity for H2 production, and the catalysis takes place at the theoretical potential of H+/H2.14... [Pg.474]

Tris(0-ethyl dithiocarbonato)chromium(III) is obtained as a dark blue crystalline powder which decomposes at 100 to 140°. The indium(III) ethylxanthate complex forms small colorless crystals which decompose at 130 to 150°.16,17 The cobalt (III) ethylxanthate complex is isolated as a dark green crystalline powder whose decomposition temperature determined by use of a thermal balance is 135 to 137° (lit. value, 117° 2 118 to 119°8). These compounds decompose slowly in air and more rapidly when heated in solution. The tripositive chromium, indium, and cobalt complexes are insoluble in water but are soluble in many organic solvents (Table T). [Pg.52]

Berndt et al. [740] have shown that traces of bismuth, cadmium, copper, cobalt, indium, nickel, lead, thallium, and zinc could be separated from samples of seawater, mineral water, and drinking water by complexation with the ammonium salt of pyrrolidine- 1-dithiocarboxylic acid, followed by filtration through a filter covered with a layer of active carbon. Sample volumes could range from 100 ml to 10 litres. The elements were dissolved in nitric acid and then determined by atomic absorption or inductively coupled plasma optical emission spectrometry. [Pg.261]

For a decade or so [CoH(CN)5] was another acclaimed catalyst for the selective hydrogenation of dienes to monoenes [2] and due to the exclusive solubility of this cobalt complex in water the studies were made either in biphasic systems or in homogeneous aqueous solutions using water soluble substrates, such as salts of sorbic add (2,4-hexadienoic acid). In the late nineteen-sixties olefin-metal and alkyl-metal complexes were observed in hydrogenation and hydration reactions of olefins and acetylenes with simple Rii(III)- and Ru(II)-chloride salts in aqueous hydrochloric acid [3,4]. No significance, however, was attributed to the water-solubility of these catalysts, and a new impetus had to come to trigger research specifically into water soluble organometallic catalysts. [Pg.10]

Among various candidates, 1,2-dimethoxyethane (DME) in toluene was found to be the best promoter providing the cycloaddition products in high yields, but required a higher pressure of CO (7 atm). Water was less efficient under the same conditions, but provided the comparable yield at higher concentrations. Nevertheless, use of DME as the solvent instead is detrimental to the reaction under the conditions. Once again, one should notice that there must be a competition between the demetallation from the alkyne-cobalt complex and the catalytic cycle for the PKR products. [Pg.342]

The valency of the complex radicle is the same as that of the central metallic atom when the complex contains only ammonia, substituted ammonia, water, or other neutral group. For example, cobalt in eobaltie. salts is trivalent, and the cobalt complex with ammonia, Co(NI13)8 ", is likewise trivalent copper in cupric sulphate is divalent, and the copper complex, [Cu(NH3)4] , is also divalent. In the same wn.y [Co(NH3)5.H30] " and [Co(NII3)4.(II20)2] " are trivalent, as also [Co(NH3)2.en2]" and [Co.en3] ", where en represents cthyleucdiamine, CH NH2... [Pg.18]

Alkali metal 1-methyl- and 1-phenyl-borinates are also available from bis(borinato)cobalt complexes (see below) on treatment with sodium or potassium cyanide in an aprotic solvent like acetonitrile. Cobalt cyanide precipitates and the alkali borinate remains in solution. After addition of thallium(I) chloride to some complexes, thallium 1-methyl- or 1-phenyl-borinate could be isolated as pale yellow solids, the only main group borinates isolated hitherto. They are insoluble in most organic solvents but readily soluble in pyridine and DMSO. The solids are stable on treatment with water and aqueous potassium hydride, but are decomposed by acids <78JOM(153)265). [Pg.643]

Reductive decarboxylation of (20) yields C02, H+, and a Co(I) species at a measurable rate (94). In the presence of CO, the starting cobalt complex is regenerated, and a catalytic system for the oxidation of CO by ferricyanide is established. It is significant that in this system the metal-carbonyl bond is formed when the cobalt is in a reduced state. It is the subsequent oxidation of the cobalt by electron transfer that activated the carbonyl to attack by water or hydroxide. That this activation results in a weaker metal-carbonyl bond is evident since the Co(III)-carbonyl may be hydrolyzed in acidic solution with loss of the carbon monoxide ligand (94). [Pg.110]

Ealy, Jr., "Effect of Temperature Change on Equilibrium Cobalt Complex" Chemical Demonstrations, A Sourcebook for Teachers, Vol. 1 (American Chemical Society, Washington, DC, 1988), p. 60-61. Concentrated hydrochloric acid is added to pink [Co(H20)5]2+ until blue [C0CI4]2- is formed. When heated the solution turns darker blue when cooled the solution turns pink, indicating that the reaction is endothermic. Students are asked to examine the equilibrium reaction and predict how the system will shift upon the addition of water. [Pg.554]

The iron compound readily sublimes and yields well-formed, black lustrous crystals. The cobalt complex will also readily sublime, but dependent upon the temperature at which the crystals are formed, they can be either black or brown in color. The crystal structures of both the cobalt and iron complexes have been determined.3 The nickel complex sublimes only in small amounts with difficulty. All three complexes are unstable to air and water, and the nickel complex readily undergoes thermal decomposition above 100°C. All three compounds will also readily form complexes with a variety of donor ligands such as tertiary arsines or phosphines. The nickel compound usually forms 2 1 adducts such as [(C6HS )3P]2Ni(NO)I, while the iron and cobalt complexes often undergo disproportionation.5... [Pg.89]


See other pages where Water cobalt complex is mentioned: [Pg.439]    [Pg.316]    [Pg.83]    [Pg.176]    [Pg.178]    [Pg.994]    [Pg.322]    [Pg.76]    [Pg.27]    [Pg.120]    [Pg.527]    [Pg.116]    [Pg.166]    [Pg.924]    [Pg.244]    [Pg.282]    [Pg.505]    [Pg.235]    [Pg.328]    [Pg.89]    [Pg.216]    [Pg.138]    [Pg.138]    [Pg.606]    [Pg.609]    [Pg.924]    [Pg.25]    [Pg.328]    [Pg.283]    [Pg.761]    [Pg.542]    [Pg.467]    [Pg.469]    [Pg.270]    [Pg.52]    [Pg.90]    [Pg.786]   
See also in sourсe #XX -- [ Pg.21 , Pg.23 , Pg.76 , Pg.110 , Pg.123 , Pg.124 , Pg.125 ]

See also in sourсe #XX -- [ Pg.21 , Pg.23 , Pg.76 , Pg.110 , Pg.123 , Pg.124 , Pg.125 ]

See also in sourсe #XX -- [ Pg.21 , Pg.23 , Pg.76 , Pg.110 , Pg.123 , Pg.124 , Pg.125 ]

See also in sourсe #XX -- [ Pg.21 , Pg.23 , Pg.76 , Pg.110 , Pg.123 , Pg.124 , Pg.125 ]




SEARCH



Cobalt complexes in hydrogen production from water

Cobalt complexes water exchange reaction

Cobaltate, complex with water soluble

Cobaltate, complex with water soluble phosphine

Water cadmium and cobalt complexes

Water complexes

Water complexity

© 2024 chempedia.info