Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity and Surface Tension

Table 5.16 Viscosity and Surface Tension of Various Organic Substances 5.90... Table 5.16 Viscosity and Surface Tension of Various Organic Substances 5.90...
Properties. The physical properties of aHphatic fluorine compounds containing chlorine are similar to those of the PECs or HECs (3,5). They usually have high densities and low boiling points, viscosities, and surface tensions. The irregularity in the boiling points of the fluorinated methanes, however, does not appear in the chlorofluorocarbons. Their boiling points consistently increase with the number of chlorines present. The properties of some CECs and HCECs are shown in Tables 3 and 4. [Pg.284]

Figures 1 and 2 show the relationship of viscosity and surface tension with temperature for various amyl alcohols. Curves for lower and higher alcohol homologues are shown for comparison. Figures 1 and 2 show the relationship of viscosity and surface tension with temperature for various amyl alcohols. Curves for lower and higher alcohol homologues are shown for comparison.
The fundamental principle of Hquid disiategration Hes ia the balance between dismptive and cohesive forces. The common dismptive forces ia atomizer systems iaclude kinetic energy, turbulent fluctuation, pressure fluctuation, iaterface shearing, friction, and gravity. The cohesive forces within the Hquid are molecular bonding, viscosity, and surface tension. [Pg.329]

Because of the complexity of designs and performance characteristics, it is difficult to select the optimum atomizer for a given appHcation. The best approach is to consult and work with atomizer manufacturers. Their technical staffs are familiar with diverse appHcations and can provide valuable assistance. However, they will usually require the foUowing information properties of the Hquid to be atomized, eg, density, viscosity, and surface tension operating conditions, such as flow rate, pressure, and temperature range required mean droplet size and size distribution desired spray pattern spray angle requirement ambient environment flow field velocity requirements dimensional restrictions flow rate tolerance material to be used for atomizer constmction cost and safety considerations. [Pg.334]

Effect of Physical Properties on Drop Size Because of the extreme variety of available geometries, no attempt to encompass this variable is made here. The suggested predictive route starts with air-water droplet size data from the manulac turer at the chosen flow rate. This drop size is then corrected by Eq. (14-195) for different viscosity and surface tension ... [Pg.1409]

If the blending process is between two or more fluids with relatively low viscosity such that the blending is not affected by fluid shear rates, then the difference in blend time and circulation between small and large tanks is the only factor involved. However, if the blending involves wide disparities in the density of viscosity and surface tension between the various phases, then a certain level of shear rate may be required before blending can proceed to the required degree of uniformity. [Pg.1631]

Den.sity, viscosity, and. surface tension. These are properties at operating temperature of any liquid added. [Pg.1762]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

Solvents influence rate as well as selectivity. The effect on rate can be very great, and a number of factors contribute to it. In closely related solvents, the rate may be directly proportional to the solubility of hydrogen in the solvent, as was shown to be the case for the hydrogenation of cyclohexene over platinum-on-alumina in cyclohexane, methylcyclohexane, and octane 48). Solvents can compete for catalyst sites with the reacting substrates, change viscosity and surface tension (108), and alter hydrogen availability at the catalyst surface. [Pg.8]

Describe the structure of a liquid and explain how viscosity and surface tension vary with temperature and the strength of intermolecular forces (Sections 5.6 and 5.7). [Pg.327]

Aqueous standard solutions are a source of certain difficulties In electrothermal atomic absorption spectrometry of trace metals In biological fluids The viscosities and surface tensions of aqueous standard solutions are substantially less than the viscosities and surface tensions of serum, blood and other proteln-contalnlng fluids These factors Introduce volumetric disparities In pipetting of standard solutions and body fluids, and also cause differences In penetration of these liquids Into porous graphite tubes or rods Preliminary treatment of porous graphite with xylene may help to minimize the differences of liquid penetration (53,67) A more satisfactory solution of this problem Is preparation of standards In aqueous solutions of metal-free dextran (50-60 g/llter), as first proposed by Pekarek et al ( ) for the standardization of serum chromium analyses This practice has been used successfully by the present author for standardization of analyses of serum nickel The standard solutions which are prepared In aqueous dextran resemble serum In regard to viscosity and surface tension Introduction of dextran-contalnlng standard solutions Is an Important contribution to electrothermal atomic absorption analysis of trace metals In body fluids. [Pg.255]

W-3 CHF correlation. The insight into CHF mechanism obtained from visual observations and from macroscopic analyses of the individual effect of p, G, and X revealed that the local p-G-X effects are coupled in affecting the flow pattern and thence the CHF. The system pressure determines the saturation temperature and its associated thermal properties. Coupled with local enthalpy, it provides the local subcooling for bubble condensation or the latent heat (Hfg) for bubble formation. The saturation properties (viscosity and surface tension) affect the bubble size, bubble buoyancy, and the local void fraction distribution in a flow pattern. The local enthalpy couples with mass flux at a certain pressure determines the void slip ratio and coolant mixing. They, in turn, affect the bubble-layer thickness in a low-enthalpy bubbly flow or the liquid droplet entrainment in a high-enthalpy annular flow. [Pg.433]

Baker (Bl) developed a flow pattern map for horizontal gas-liquid systems that is shown in Fig. 5. The coordinates are functions of gas and liquid mass flow rates, phase densities, liquid viscosity, and surface tension. Using the same coordinates, Cichy et al. (C5) have presented a modification of the flow-pattern maps of Govier and co-workers (B6, G2, G3) for vertical gas liquid systems. [Pg.17]

The important liquid phase physicochemical properties which affect the cavitation phenomena and hence the extent of cavitational effects for the given application include vapor pressure, viscosity and surface tension. [Pg.54]


See other pages where Viscosity and Surface Tension is mentioned: [Pg.2767]    [Pg.451]    [Pg.56]    [Pg.898]    [Pg.334]    [Pg.585]    [Pg.115]    [Pg.17]    [Pg.299]    [Pg.308]    [Pg.999]    [Pg.145]    [Pg.248]    [Pg.599]    [Pg.434]    [Pg.83]    [Pg.396]    [Pg.390]    [Pg.132]    [Pg.12]   


SEARCH



And viscosity

Surface tension and

Surface viscosity

© 2024 chempedia.info