Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinylidene fluoride mechanical

Fluorinated rubbers, copolymers of hexafluoropropylene and vinylidene-fluorides, have excellent resistance to oils, fuels and lubricants at temperatures up to 200°C. They have better resistance to aliphatic, aromatic and chlorinated hydrocarbons and most mineral acids than other rubbers, but their high cost restricts their engineering applications. Cheremisinoff et al. [54] provide extensive physical and mechanical properties data on engineering plastics. A glossary of terms concerned with fabrication and properties of plastics is given in the last section of this chapter. [Pg.123]

Barium titanate is one example of a ferroelectric material. Other oxides with the perovskite structure are also ferroelectric (e.g., lead titanate and lithium niobate). One important set of such compounds, used in many transducer applications, is the mixed oxides PZT (PbZri-Ji/Ds). These, like barium titanate, have small ions in Oe cages which are easily displaced. Other ferroelectric solids include hydrogen-bonded solids, such as KH2PO4 and Rochelle salt (NaKC4H406.4H20), salts with anions which possess dipole moments, such as NaNOz, and copolymers of poly vinylidene fluoride. It has even been proposed that ferroelectric mechanisms are involved in some biological processes such as brain memory and voltagedependent ion channels concerned with impulse conduction in nerve and muscle cells. [Pg.392]

Fluorosilicone elastomers generally respond to ionizing radiation in a fashion similar to fhaf of silicone elastomers (polydimethylsiloxanes). One interesting application is a process of preparing blends of fluoroplastics, such as poly(vinylidene fluoride), with fluorosilicone elastomers to obtain materials having a unique combination of flexibility at low temperatures and high mechanical stiength. ... [Pg.115]

Gohil, R. M. and Petermann, J. Chain conformational defects in polyvinylidene fluoride. Polymer 22, 1612 (1981) Takahashi, Y. and Tadokoro, H. Formation mechanism of kink bands in modification II of poly(vinylidene fluoride). Evidence for flip-flop motion between TGTG and TGTG conformations. Macromolecules 13, 1316 (1980) Takahashi, Y., Tadokoro,... [Pg.58]

The first major application of microfiltration membranes was for biological testing of water. This remains an important laboratory application in microbiology and biotechnology. For these applications the early cellulose acetate/cellulose nitrate phase separation membranes made by vapor-phase precipitation with water are still widely used. In the early 1960s and 1970s, a number of other membrane materials with improved mechanical properties and chemical stability were developed. These include polyacrylonitrile-poly(vinyl chloride) copolymers, poly(vinylidene fluoride), polysulfone, cellulose triacetate, and various nylons. Most cartridge filters use these membranes. More recently poly(tetrafluo-roethylene) membranes have come into use. [Pg.287]

The preceding structural characteristics dictate the state of polymer (rubbery vs. glassy vs. semicrystalline) which will strongly affect mechanical strength, thermal stability, chemical resistance and transport properties [6]. In most polymeric membranes, the polymer is in an amorphous state. However, some polymers, especially those with flexible chains of regular chemical structure (e.g., polyethylene/PE/, polypropylene/PP/or poly(vinylidene fluoride)/PVDF/), tend to form crystalline... [Pg.22]

There are essentially two methods used for the production of commercial FTPEs. The first is referred to as iodine transfer polymerization, which is similar to the living anionic polymerization used to make block copolymers such as styrene-butadiene-styrene (e.g., Kraton ). The difference is that this living polymerization is based on a free radical mechanism. The products consist of soft segments based on copolymers of vinylidene fluoride (VDF) with hexafluoropropylene (HFP) and... [Pg.155]

Jin et al. (65) used poly(vinylidene fluoride) (PVDF) as a compatibilizer to assist dispersion of CNTs in PMMA. Multi-walled carbon nanotubes were first coated with PVDF and then melt-blended with PMMA. Poly(vinylidene fluoride) served as an adhesive to improve wetting of CNTs by PMMA and to increase the interfacial adhesion resulting in improved mechanical properties of MWCNT-PMMA composites. [Pg.188]

The mechanism of the polarity inversion of tautomeric molecules is totally different from the orientation polarization of conventional organic dielectrics, such as camphor and poly(vinylidene fluoride), and the dielectric response of this new type of dielectric should be much faster. Furthermore, a significant contribution of the proton-tunnelling mechanism to the proton tautomerism is frequently observed. Consequently, the dielectric property derived from proton tautomerization should have a high chance of being related to quantum phenomena. [Pg.254]

Fluorocarbon elastomers based on vinylidene fluoride can be cross-linked by ionic mechanism. However, if the polymer has been prepared in the presence of a cure site monomer (CSM) it can be cross-linked (cured) by a free radical mechanism. Moreover, many flnoroelastomers can be cross-linked by ionizing radiation (see Section 5.1.3.3). [Pg.98]

The piezoelectric phenomena have been used to generate ultrasonic waves up to microwave frequencies using thin poly(vinylidene fluoride) transducers. In the audio range a new type of loudspeaker has been introduced using the transverse piezolectric effect on a mechanically biased membrane. This development has been of considerable interest to telephone engineers and scientists. [Pg.377]

Another example of the use of polarized radiation in imaging studies is the analysis of poly(vinylidene fluoride)(PVDF) films, which have been uniaxially elongated at different temperatures. Depending on the thermal, mechanical and electrical pretreatment, PVDF can exist in different modifications [59]. The crystal structure of the cmmpled 11(a) modification can be converted into the aU-tra s 1(P) form by tensile stress below 140°C (see Figure 9.27a). Figure 9.27b shows the stress-strain diagrams of PVDF films in the 11(a) form which have been elongated to 400 % strain at 100 and 150°C. The observed decrease in stress upon elevation of the... [Pg.324]


See other pages where Vinylidene fluoride mechanical is mentioned: [Pg.376]    [Pg.384]    [Pg.360]    [Pg.101]    [Pg.109]    [Pg.305]    [Pg.220]    [Pg.115]    [Pg.109]    [Pg.191]    [Pg.192]    [Pg.221]    [Pg.241]    [Pg.4]    [Pg.148]    [Pg.221]    [Pg.139]    [Pg.659]    [Pg.418]    [Pg.80]    [Pg.63]    [Pg.347]    [Pg.498]    [Pg.333]    [Pg.152]    [Pg.100]    [Pg.173]    [Pg.498]    [Pg.127]    [Pg.259]    [Pg.3852]    [Pg.335]    [Pg.80]    [Pg.376]    [Pg.384]   


SEARCH



Fluoride mechanism

Vinylidene

Vinylidene fluoride

Vinylidenes

© 2024 chempedia.info