Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational spectroscopy structures

Vibrational spectroscopy provides detailed infonnation on both structure and dynamics of molecular species. Infrared (IR) and Raman spectroscopy are the most connnonly used methods, and will be covered in detail in this chapter. There exist other methods to obtain vibrational spectra, but those are somewhat more specialized and used less often. They are discussed in other chapters, and include inelastic neutron scattering (INS), helium atom scattering, electron energy loss spectroscopy (EELS), photoelectron spectroscopy, among others. [Pg.1149]

Vibrational spectroscopy has been, and will continue to be, one of the most important teclmiques in physical chemistry. In fact, the vibrational absorption of a single acetylene molecule on a Cu(lOO) surface was recently reported [ ]. Its endurance is due to the fact that it provides detailed infonnation on structure, dynamics and enviromnent. It is employed in a wide variety of circumstances, from routine analytical applications, to identifying novel (often transient) species, to providing some of the most important data for advancing the understanding of intramolecular and intemiolecular interactions. [Pg.1175]

The major role of TOF-SARS and SARIS is as surface structure analysis teclmiques which are capable of probing the positions of all elements with an accuracy of <0.1 A. They are sensitive to short-range order, i.e. individual interatomic spacings that are <10 A. They provide a direct measure of the interatomic distances in the first and subsurface layers and a measure of surface periodicity in real space. One of its most important applications is the direct determination of hydrogen adsorption sites by recoiling spectrometry [12, 4T ]. Most other surface structure teclmiques do not detect hydrogen, with the possible exception of He atom scattering and vibrational spectroscopy. [Pg.1823]

In the chapter on vibrational spectroscopy (Chapter 6) 1 have expanded the discussions of inversion, ring-puckering and torsional vibrations, including some model potential functions. These types of vibration are very important in the determination of molecular structure. [Pg.468]

Angeli s salt Na2N203 has been shown by vibration spectroscopy to contain the trioxodinitrate(II) anion structure (2). Its decomposition and reactions in aqueous solutions have been extensively studied by nmr spectroscopy and other techniques. [Pg.460]

Monomeric neutral SO4 can be obtained by reaction of SO3 and atomic oxygen photolysis of S03/ozone mixtures also yields monomeric SO4, which can be isolated by inert-gas matrix techniques at low temperatures (15-78 K). Vibration spectroscopy indicates either an open peroxo Cj structure or a closed peroxo C2v structure, the former being preferred by the most recent study, on the basis of agreement between observed and calculated frequencies and reasonable values for the force constants ... [Pg.704]

The compound can also be made by photolysis of a mixture of CIF and O3 in Ar at 4-15 K evidence for the expected nonlinear by structure comes from vibration spectroscopy (Fig. 17.26a). [Pg.876]

This last reaction is typical of many in which F3CIO can act as a Lewis base by fluoride ion donation to acceptors such as MF5 (M = P, As, Sb, Bi, V, Nb, Ta, Pt, U), M0F4O, Sip4, BF3, etc. These products are all white, stable, crystalline solids (except the canary yellow PtFe ) and contain the [F2CIO] cation (see Fig. 17.26h) which is isostructural with the isoelectronic F2SO. Chlorine trifluoride oxide can also act as a Lewis acid (fluoride ion acceptor) and is therefore to be considered as amphoteric (p. 225). For example KF, RbF and CsF yield M [F4C10] as white solids whose stabilities increase with increasing size of M+. Vibration spectroscopy establishes the C4 structure of the anion (Fig. 17.29g). [Pg.877]

The phase composition of products obtained from the thermal treatment of LiNbOF4 and NaNbOF4 was investigated using X-ray diffraction and vibration spectroscopy, as reported in [379]. Compounds with the following structures were found M2NbOF5, MNb02F2 and MNbC>3, where M = Li or Na. [Pg.202]

For on-bead analysis vibrational spectroscopy (IR-spectroscopy) can be employed attenuated total reflection is a method allowing fast and nondestructive on-bead analysis of small samples (single bead analysis) without significant sample preparation. Solid phase NMR is the method of choice if complex structural analysis is intended on the support. Spatially resolved analysis on the resin is possible with microscopic techniques. [Pg.383]

The concentration of this species in liquid sulfur was estimated from the calculated Gibbs energy of formation as ca. 1% of all Ss species at the boihng point [35]. In this context it is interesting to note that the structurally related homocyclic sulfur oxide Sy=0 is known as a pure compound and has been characterized by X-ray crystallography and vibrational spectroscopy [48, 49]. Similarly, branched long chains of the type -S-S-S(=S)-S-S- must be components of the polymeric S o present in liquid sulfur at higher temperatures since the model compound H-S-S-S(=S)-S-S-H was calculated to be by only 53 kJ mol less stable at the G3X(MP2) level than the unbranched helical isomer of HySs [35]. [Pg.38]

Since the vibrational spectra of sulfur allotropes are characteristic for their molecular and crystalline structure, vibrational spectroscopy has become a valuable tool in structural studies besides X-ray diffraction techniques. In particular, Raman spectroscopy on sulfur samples at high pressures is much easier to perform than IR spectroscopical studies due to technical demands (e.g., throughput of the IR beam, spectral range in the far-infrared). On the other hand, application of laser radiation for exciting the Raman spectrum may cause photo-induced structural changes. High-pressure phase transitions and structures of elemental sulfur at high pressures were already discussed in [1]. [Pg.82]

The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper we review recent work in our laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper we review a more analytical approach we have developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations. [Pg.82]

Coverage and Secondary Ion Yield Relationship for Ni(100)/CO. We showed above the enormous variation in yields that occurred on going from adsorption to oxide nucleation. In the case of Ni(100)/CO, one can perform more subtle bonding changes by changing the CO coverage. Below 0 O.4 ML, no ordered LEED structure is formed, and vibrational spectroscopy (HRELS) indicates... [Pg.321]

Strong correlation of the spectra of surface species with vibrational spectroscopy of molecules of known structure. [Pg.404]

Spin-state transitions have been studied by the application of numerous physical techniques such as the measurement of magnetic susceptibility, optical and vibrational spectroscopy, the Fe-Mbssbauer effect, EPR, NMR, and EXAFS spectroscopy, the measurement of heat capacity, and others. Most of these studies have been adequately reviewed. The somewhat older surveys [3, 19] cover the complete field of spin-state transitions. Several more recent review articles [20, 21, 22, 23, 24, 25] have been devoted exclusively to spin-state transitions in compounds of iron(II). Two reviews [26, 27] have considered inter alia the available theoretical models of spin-state transitions. Of particular interest is the determination of the X-ray crystal structures of spin transition compounds at two or more temperatures thus approaching the structures of the pure HS and LS electronic isomers. A recent survey [6] concentrates particularly on these studies. [Pg.58]

Raman spectroscopy A nondestructive method for the study of the vibrational band structure of materials, which has been extensively used for the characterization of diamond, graphite, and diamond-like carbon. Raman spectroscopy is so far the most popular technique for identifying sp bonding in diamond and sp bonding in graphite and diamond-like carbon. [Pg.10]


See other pages where Vibrational spectroscopy structures is mentioned: [Pg.518]    [Pg.588]    [Pg.456]    [Pg.132]    [Pg.236]    [Pg.240]    [Pg.562]    [Pg.569]    [Pg.576]    [Pg.683]    [Pg.691]    [Pg.883]    [Pg.140]    [Pg.45]    [Pg.4]    [Pg.275]    [Pg.342]    [Pg.354]    [Pg.193]    [Pg.199]    [Pg.392]    [Pg.394]    [Pg.106]    [Pg.71]    [Pg.163]    [Pg.165]    [Pg.4]    [Pg.70]    [Pg.71]    [Pg.124]    [Pg.146]    [Pg.15]    [Pg.144]   
See also in sourсe #XX -- [ Pg.214 , Pg.215 , Pg.216 , Pg.217 , Pg.218 , Pg.219 , Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 , Pg.227 ]

See also in sourсe #XX -- [ Pg.214 , Pg.215 , Pg.216 , Pg.217 , Pg.218 , Pg.219 , Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 , Pg.227 ]




SEARCH



Spectroscopy structure)

Structural vibration

Vibration /vibrations spectroscopy

Vibration structure

Vibrational structures

© 2024 chempedia.info