Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational relaxation ultrafast dynamics

The dynamics of fast processes such as electron and energy transfers and vibrational and electronic deexcitations can be probed by using short-pulsed lasers. The experimental developments that have made possible the direct probing of molecular dissociation steps and other ultrafast processes in real time (in the femtosecond time range) have, in a few cases, been extended to the study of surface phenomena. For instance, two-photon photoemission has been used to study the dynamics of electrons at interfaces [ ]. Vibrational relaxation times have also been measured for a number of modes such as the 0-Fl stretching m silica and the C-0 stretching in carbon monoxide adsorbed on transition metals [ ]. Pump-probe laser experiments such as these are difficult, but the field is still in its infancy, and much is expected in this direction m the near fiitiire. [Pg.1790]

The events taking place in the RCs within the timescale of ps and sub-ps ranges usually involve vibrational relaxation, internal conversion, and photo-induced electron and energy transfers. It is important to note that in order to observe such ultrafast processes, ultrashort pulse laser spectroscopic techniques are often employed. In such cases, from the uncertainty principle AEAt Ti/2, one can see that a number of states can be coherently (or simultaneously) excited. In this case, the observed time-resolved spectra contain the information of the dynamics of both populations and coherences (or phases) of the system. Due to the dynamical contribution of coherences, the quantum beat is often observed in the fs time-resolved experiments. [Pg.6]

Finally, solute radical ions can be generated by light-induced, one-photon or multiphoton ionization of their parent compounds (Chaps. 5 and 16). This approach is particularly useful in the ultrafast studies of short-lived, unstable radical ions that aim to unravel their solvation, recombination, reaction, and vibrational relaxation dynamics of the primary charges (see, e.g., Chap. 10). Whereas the time scale of radiolytic production of secondary ions is always limited by the rate with which the primary species reacts with the dispersed parent molecules, light-induced charge separation can occur in <100 fsec. There are many studies on photoionization of solute molecules in liquid solutions we do not intend to review these works. [Pg.302]

The next two chapters are devoted to ultrafast radiationless transitions. In Chapter 5, the generalized linear response theory is used to treat the non-equilibrium dynamics of molecular systems. This method, based on the density matrix method, can also be used to calculate the transient spectroscopic signals that are often monitored experimentally. As an application of the method, the authors present the study of the interfadal photo-induced electron transfer in dye-sensitized solar cell as observed by transient absorption spectroscopy. Chapter 6 uses the density matrix method to discuss important processes that occur in the bacterial photosynthetic reaction center, which has congested electronic structure within 200-1500cm 1 and weak interactions between these electronic states. Therefore, this biological system is an ideal system to examine theoretical models (memory effect, coherence effect, vibrational relaxation, etc.) and techniques (generalized linear response theory, Forster-Dexter theory, Marcus theory, internal conversion theory, etc.) for treating ultrafast radiationless transition phenomena. [Pg.6]

It can be seen from the discussion in later sections that vibrational relaxation in dense media plays a very important role in ultrafast phenomena. The dynamics of vibrational relaxation can be described as follows. Let Q be the normal coordinate of the system mode and assume that the system oscillator is linearly coupled to the heat bath [8,11-16], i.e.,... [Pg.131]

Tianquan Lian received his BS degree from Xiamen University in 1985, his MS degree from the Chinese Academy of Sciences in 1988 and his PhD from the University of Pennsylvania in 1993. After postdoctoral training in the University of California at Berkeley, he joined the faculty of chemistry department at Emory University in 1996. He was promoted to associate professor in 2002 and full professor in 2005. He has been a recipient of the NSF CAREER award and the Sloan fellowship. His research interest is focused on the ultrafast dynamics of nanomaterials and interfaces. He is particularly interested in fundamental physical chemistry problems related to nanomaterials-based solar energy conversion concepts and devices. These problems include the dynamics of electron transfer, energy transfer, vibrational energy relaxation and solvation at interfaces and in nanomaterials. [Pg.775]

Abstract The density matrix method is a powerful theoretical technique to describe the ultrafast processes and to analyze the femtosecond time-resolved spectra in the pump-probe experiment. The dynamics of population and coherence of the system can be described by the evolution of density matrix elements. In this chapter, the applications of density matrix method on internal conversion and vibrational relaxation processes will be presented. As an example, the ultfafast internal conversion process of Jt jt nn transition of pyrazine will be presented,... [Pg.79]

Pump-probe experiment is an efficient approach to detect the ultrafast processes of molecules, clusters, and dense media. The dynamics of population and coherence of the system can be theoretically described using density matrix method. In this chapter, for ultrafast processes, we choose to investigate the effect of conical intersection (Cl) on internal conversion (IC) and the theory and numerical calculations of intramolecular vibrational relaxation (IVR). Since the 1970s, the theories of vibrational relaxation have been widely studied [1-7], Until recently, the quantum chemical calculations of anharmonic coefficients of potential-energy surfaces (PESs) have become available [8-10]. In this chapter, we shall use the water dimer (H20)2 and aniline as examples to demonstrate how to apply the adiabatic approximation to calculate the rates of vibrational relaxation. [Pg.80]

Vibrational spectroscopy can help us escape from this predicament due to the exquisite sensitivity of vibrational frequencies, particularly of the OH stretch, to local molecular environments. Thus, very roughly, one can think of the infrared or Raman spectrum of liquid water as reflecting the distribution of vibrational frequencies sampled by the ensemble of molecules, which reflects the distribution of local molecular environments. This picture is oversimplified, in part as a result of the phenomenon of motional narrowing The vibrational frequencies fluctuate in time (as local molecular environments rearrange), which causes the line shape to be narrower than the distribution of frequencies [3]. Thus in principle, in addition to information about liquid structure, one can obtain information about molecular dynamics from vibrational line shapes. In practice, however, it is often hard to extract this information. Recent and important advances in ultrafast vibrational spectroscopy provide much more useful methods for probing dynamic frequency fluctuations, a process often referred to as spectral diffusion. Ultrafast vibrational spectroscopy of water has also been used to probe molecular rotation and vibrational energy relaxation. The latter process, while fundamental and important, will not be discussed in this chapter, but instead will be covered in a separate review [4],... [Pg.60]

Ultrafast vibrational spectroscopy offers a variety of techniques for unraveling the microsopic dynamics of hydrogen bonds occurring in the femto- to picosecond time domain. In particular, different vibrational couplings can be separated in nonlinear experiments by measuring vibrational dynamics in real-time. Both coherent vibrational polarizations and processes of population and energy relaxation have been studied for a number of hydrogen bonded systems in liquids [1],... [Pg.157]


See other pages where Vibrational relaxation ultrafast dynamics is mentioned: [Pg.257]    [Pg.12]    [Pg.411]    [Pg.144]    [Pg.98]    [Pg.18]    [Pg.18]    [Pg.19]    [Pg.223]    [Pg.128]    [Pg.11]    [Pg.411]    [Pg.105]    [Pg.88]    [Pg.22]    [Pg.397]    [Pg.771]    [Pg.194]    [Pg.108]    [Pg.205]    [Pg.603]    [Pg.383]    [Pg.24]    [Pg.136]    [Pg.198]    [Pg.202]    [Pg.84]    [Pg.264]    [Pg.270]    [Pg.374]    [Pg.41]    [Pg.157]    [Pg.234]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Fast vibrational relaxation, ultrafast dynamics

Relaxation dynamics

Ultrafast

Ultrafast relaxation

Vibrational dynamics

Vibrational relaxation

Vibrational relaxation dynamics

Vibrational relaxational

© 2024 chempedia.info