Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational relaxation process

Matrix-isolated molecules exhibit a surprising facility for interelectronic relaxation processes. Vibrational relaxation in excited electronic states is often dominated by interstate cascades involving other electronic states. The rates of the individual steps of such a cascade are modulated by the intramolecular Franck-Condon factors and exhibit qualitatively an exponential dependence on the size of the energy gap expected by multiphonon relaxation theories. [Pg.532]

Within physical chemistry, the long-lasting interest in IR spectroscopy lies in structural and dynamical characterization. Fligh resolution vibration-rotation spectroscopy in the gas phase reveals bond lengths, bond angles, molecular symmetry and force constants. Time-resolved IR spectroscopy characterizes reaction kinetics, vibrational lifetimes and relaxation processes. [Pg.1150]

The purpose of these comparisons is simply to point out how complete the parallel is between the Rouse molecular model and the mechanical models we discussed earlier. While the summations in the stress relaxation and creep expressions were included to give better agreement with experiment, the summations in the Rouse theory arise naturally from a consideration of different modes of vibration. It should be noted that all of these modes are overtones of the same fundamental and do not arise from considering different relaxation processes. As we have noted before, different types of encumbrance have different effects on the displacement of the molecules. The mechanical models correct for this in a way the simple Rouse model does not. Allowing for more than one value of f, along the lines of Example 3.7, is one of the ways the Rouse theory has been modified to generate two sets of Tp values. The results of this development are comparable to summing multiple effects in the mechanical models. In all cases the more elaborate expressions describe experimental results better. [Pg.193]

Vibrational broadening in [162] was taken into account under the conventional assumption that contributions of vibrational dephasing and rotational relaxation to contour width are additive as in Eq. (3.49). This approximation provides the largest error at low densities, when the contour is significantly asymmetric and the perturbation theory does not work. In the frame of impact theory these relaxation processes may be separated more correctly under assumption of their statistical independence. Inclusion of dephasing causes appearance of a factor... [Pg.123]

Although the idea of generating 2D correlation spectra was introduced several decades ago in the field of NMR [1008], extension to other areas of spectroscopy has been slow. This is essentially on account of the time-scale. Characteristic times associated with typical molecular vibrations probed by IR are of the order of picoseconds, which is many orders of magnitude shorter than the relaxation times in NMR. Consequently, the standard approach used successfully in 2D NMR, i.e. multiple-pulse excitations of a system, followed by detection and subsequent double Fourier transformation of a series of free-induction decay signals [1009], is not readily applicable to conventional IR experiments. A very different experimental approach is therefore required. The approach for generation of 2D IR spectra defined by two independent wavenumbers is based on the detection of various relaxation processes, which are much slower than vibrational relaxations but are closely associated with molecular-scale phenomena. These slower relaxation processes can be studied with a conventional... [Pg.561]

Rini M, Dreyer J, Nibbering ETJ et al (2003) Ultrafast vibrational relaxation processes induced by intramolecular excited state hydrogen transfer. Chem Phys Lett 374 13-19... [Pg.264]

Certain features of light emission processes have been alluded to in Sect. 4.4.1. Fluorescence is light emission between states of the same multiplicity, whereas phosphorescence refers to emission between states of different multiplicities. The Franck-Condon principle governs the emission processes, as it does the absorption process. Vibrational overlap determines the relative intensities of different subbands. In the upper electronic state, one expects a quick relaxation and, therefore, a thermal population distribution, in the liquid phase and in gases at not too low a pressure. Because of the combination of the Franck-Condon principle and fast vibrational relaxation, the emission spectrum is always red-shifted. Therefore, oscillator strengths obtained from absorption are not too useful in determining the emission intensity. The theoretical radiative lifetime in terms of the Einstein coefficient, r = A-1, or (EA,)-1 if several lower states are involved,... [Pg.91]

In Eqs. (II. 1)—(II.4) we have assumed that there is only one system oscillator. In the case where there exists more than one oscillator mode, in addition to the processes of vibrational relaxation directly into the heat bath, there are the so-called cascade processes in which the highest-frequency system mode relaxes into the lower-frequency system modes with the excess energy relaxed into the heat bath. These cascade processes can often be very fast. The master equations of these complicated vibrational relaxation processes can be derived in a straightforward manner. [Pg.81]

As the detailed mathematical description of these processes is rather tedious,140 here we confine ourselves to the temperature-dependent dephasing and three-particle relaxation (processes of types B and 3-A in Table 4.1) contributing to the shift A0(Qk) and width TB(QK) of the spectral line for a local vibration QK at =(Of,(K) coK T ... [Pg.109]

Summary. Coherent optical phonons are the lattice atoms vibrating in phase with each other over a macroscopic spatial region. With sub-10 fs laser pulses, one can impulsively excite the coherent phonons of a frequency up to 50THz, and detect them optically as a periodic modulation of electric susceptibility. The generation and relaxation processes depend critically on the coupling of the phonon mode to photoexcited electrons. Real-time observation of coherent phonons can thus offer crucial insight into the dynamic nature of the coupling, especially in extremely nonequilibrium conditions under intense photoexcitation. [Pg.23]

The absorption of electromagnetic radiation by molecular species in solution in the UV/visible region is followed by relaxation from excited electronic states to the ground state mostly by a combination of radiationless processes. Vibrational relaxation, where the excess energy is rapidly dis-... [Pg.373]

The much larger energy difference between Si and S0 than between any successive excited states means that, generally speaking, internal conversion between Si and S0 occurs more slowly than that between excited states. Therefore, irrespective of which upper excited state is initially produced by photon absorption, rapid internal conversion and vibrational relaxation processes mean that the excited-state molecule quickly relaxes to the Si(v0) state from which fluorescence and intersystem crossing compete effectively with internal conversion from Si. This is the basis of Kasha s rule, which states that because of the very rapid rate of deactivation to the lowest vibrational level of Si (or Td, luminescence emission and chemical reaction by excited molecules will always originate from the lowest vibrational level of Si or T ... [Pg.52]

Relaxation processes e. g. rotational isomerisation or vibrational energy transfer. [Pg.35]

A detailed description of the laser-excited vibrational fluorescence method and further results on relaxation processes in methane, including V - R transfer, have been given in reference In this paper, too, a comparison is made between the experimentally obtained F - F rates and calculations for the repulsive intermolecular potential responsible for these transitions. [Pg.28]

E.g. tryptophane residues of proteins excite at 290-295 mn but they emit photons somewhere between 310 and 350 mn. The missing energy is deposited in the tryptophane molecular enviromuent in the form of vibrational states. While the excitation process is complete in pico-seconds, the relaxation back to the initial state may take nano-seconds. While this period may appear very short, it is actually an extremely relevant time scale for proteins. Due to the inherent thermal energy, proteins move in their (aqueous) solution, they display both translational and rotational diffusion, and for both of these the characteristic time scale is nano-seconds for normal proteins. Thus we may excite the protein at time 0 and recollect some photons some nano seconds later. With the invention of lasers, as well as of very fast detectors, it is completely feasible to follow the protein relax back to its ground state with sub-nano second resolution. The relaxation process may be a simple exponential decay, although tryptophane of reasons we will not dwell on here display a multi-exponential decay. [Pg.286]

The surface hopping study was rather expensive in terms of CPU time, and consequently large numbers of trajectories could not be run. This is important to obtain statistically converged dynamical properties. The main goal of the surface hopping study was thus not to obtain such information but to provide mechanistic insight into the photodissociation and subsequent relaxation processes. The semi-classical work in the full space of nuclear coordinates provides the important vibrational degrees of freedom that one needs to include in any quantum model of the nuclear motion. This will now be described. [Pg.376]


See other pages where Vibrational relaxation process is mentioned: [Pg.13]    [Pg.163]    [Pg.13]    [Pg.163]    [Pg.256]    [Pg.361]    [Pg.275]    [Pg.400]    [Pg.198]    [Pg.107]    [Pg.60]    [Pg.486]    [Pg.242]    [Pg.666]    [Pg.178]    [Pg.20]    [Pg.402]    [Pg.299]    [Pg.299]    [Pg.105]    [Pg.20]    [Pg.311]    [Pg.13]    [Pg.109]    [Pg.8]    [Pg.77]    [Pg.264]    [Pg.285]    [Pg.100]    [Pg.360]    [Pg.27]    [Pg.14]    [Pg.507]    [Pg.19]   
See also in sourсe #XX -- [ Pg.660 ]




SEARCH



Collisional vibrational relaxation processes

Radiationless processes intramolecular vibrational relaxation

Relaxation process

Vibration processes

Vibrational and Rotational Relaxation Processes

Vibrational processes

Vibrational relaxation

Vibrational relaxational

Vibrationally Equilibrated Excited States Relaxation Processes

© 2024 chempedia.info