Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational optical activity Raman scattering

The measurement of vibrational optical activity requires the optimization of signal quality, since the experimental intensities are between three and six orders of magnitude smaller than the parent IR absorption or Raman scattering intensities. To date all successful measurements have employed the principles of modulation spectroscopy so as to overcome short-term instabilities and noise and thereby to measure VOA intensities accurately. In this approach, the polarization of the incident radiation is modulated between left and tight circular states and the difference intensity, averaged over many modulation cycles, is retained. In spite of this common basis, there are major differences in measurement technique and instrumentation between VCD and ROA consequently, the basic experimental methodology of these two techniques will be described separately. [Pg.119]

Abstract Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research. [Pg.153]

Vibrational optical activity (VOA) is a relatively new area of natural optical activity. It consists of the measurement of optical activity in the spectral regions associated with vibrational transitions in chiral molecules. There are two basic manifestations of VOA. The first is simply the extension of electronic circular dichroism (CD) into the infrared region where fundamental one-photon vibrational transitions are located. This form of VOA is referred to as vibrational circular dichroism (VCD). It was first measured as a property of individual molecules in 1974 [1], and was independently confirmed in 1975 [2]. Within the past twelve years, VCD has been reviewed on a number of occasions from a variety of perspectives [3-15], and two more reviews are currently in press [16,17], The second form of VOA has no direct analog in classical forms of optical activity. Optical activity in Raman scattering, known simply as Raman optical activity (ROA), was measured successfully for the first time in 1973 [18], and confirmed independently in 1975 [19], ROA has been described in detail and reviewed several times in the past decade from several points of view [20-24], and two additional reviews [25,26], one with a view toward biological applications [25] and the other from a theoretical perspective [26], are currently in press. In addition, two articles of a pedagogical nature are in press that have been written for a general audience, one on infrared CD [27] and the other on ROA [28],... [Pg.54]

As described above, there are two forms of vibrational optical activity, one derived from infrared absorption and the other from Raman scattering. Both forms involve the differential response of a molecule to the modulation of polarization of the interacting radiation between right and left circularly polarized states. In the case of infrared absorption, VCD is defined as die differential absorbance for left minus that for right circularly polarized infrared radiation. This is expressed by the relation ... [Pg.55]

This article reviews all the published work concerned with the study of vibrational optical activity in chiral molecules from measurements of a small difference in the intensity of Raman scattering in right and left circularly polarized incident light. The history and basic theory are described briefly, followed by an account of the instrumentation and the precautions that must be observed in order to suppress spurious signals. The various theories that have been proposed in order to relate stereochemical features to the observations are then outlined, this being followed by a survey of all reported Raman optical activity spectra. [Pg.151]

The Raman approach to vibrational optical activity is based on measurement of a small difference in the intensity of Raman-scattered light from chiral molecules in right and left circularly polarized incident light, and several reviews have appeared previously1 -S). However, another review is now timely because important experimental and theoretical developments have since brought Raman optical activity (ROA) to a new level of maturity. [Pg.152]

The other form of optical activity in vibrational transitions is known as Raman optical activity (ROA). Here, also, one measures an intensity difference for left compared to right circularly polarized incident radiation however, optical activity in light scattering has no direct analog in electronic spectroscopy. ROA was first measured by Laurence Barron, A. D. Buckingham, and M. P. Bogaard in 1973 (9) and several reviews of the subject have since appeared (10-14). [Pg.116]

These results apply specifically to Rayleigh, or elastic, scattering. For Raman, or inelastic, scattering the same basic CID expressions apply but with the molecular property tensors replaced by corresponding vibrational Raman transition tensors between the initial and final vibrational states nv and rn . In this way a s are replaced by (mv aap(Q) nv), where aQ/3(<3) s are effective polarizability and optical activity operators that depend parametrically on the normal vibrational coordinates Q such that, within the Placzek polarizability theory of the Raman effect [23], ROA intensity depends on products such as (daaf3 / dQ)0 dG af3 / dQ) and (daaf3 / dQ)0 eajS dAlSf / dQ)0. [Pg.156]

In impulsive multidimensional (1VD) Raman spectroscopy a sample is excited by a train of N pairs of optical pulses, which prepare a wavepacket of quantum states. This wavepacket is probed by the scattering of the probe pulse. The electronically off-resonant pulses interact with the electronic polarizability, which depends parametrically on the vibrational coordinates (19), and the signal is related to the 2N + I order nonlinear response (18). Seventh-order three-dimensional (3D) coherent Raman scattering, technique has been proposed by Loring and Mukamel (20) and reported in Refs. 12 and 21. Fifth-order two-dimensional (2D) Raman spectroscopy, proposed later by Tanimura and Mukamel (22), had triggered extensive experimental (23-28) and theoretical (13,25,29-38) activity. Raman techniques have been reviewed recently (12,13) and will not be discussed here. [Pg.362]

The occurrence of Raman scattering is connected to the change in polarizability during the transition of the molecule from one vibrational state to the other. Circular polarization ROA arises from interference of the electric dipole electric dipole polarizability tensor with the electric dipole - magnetic dipole and the electric dipole electric quadrupole optical activity tensors. Due to limited space, no rigorous derivation of the theory will be given here, but only the most important results shall be shown. [Pg.565]

Raman optical activity (RO A) Due to molecular chirality there is a difference in the intensity of Raman scattered right and left circularly polarized light. Raman optical activity (ROA) is a vibrational spectroscopic technique that is reliant on this difference and the spectrum of intensity differences recorded over a range of wavenumbers reveals information about chiral centers within a sample molecule. It is a useful probe to study biomolecular structures and their behavior in aqueous solution especially those of proteins, nucleic acids, carbohydrates, and viruses. The information obtained is in realistic conditions... [Pg.636]

As written, the CIDs (2.3) and (2.5) apply to Rayleigh scattering. The same expression can be used for Raman optical activity if the property tensors are replaced by corresponding vibrational Raman transition tensors. This enables us to deduce the basic symmetry requirements for natural vibrational ROA 15,5) the same components of aap and G p must span the irreducible representation of the particular normal coordinate of vibration. This can only happen in the chiral point groups C , Dn, O, T, I (which lack improper rotation elements) in which polar and axial tensors of the same rank, such as aaP and G (or e, /SAv6, ) have identical transformation properties. Thus, all the Raman-active vibrations in a chiral molecule should show Raman optical activity. [Pg.156]

Raman optical activity has only been measured so far in pure liquids and strong solutions. Crystals and powders are harder to study crystals must be polished and oriented carefully to eliminate artefacts, whereas multiple scattering in powders depolarizes the incident light. It would be of great interest to measure pure rotational, and rotational-vibrational, ROA in gases, but insufficient scattered intensity has so far prevented this. An additional complication in resonance scattering is that circular dichroism of the incident beam can contribute to the measured circular intensity difference. [Pg.157]


See other pages where Vibrational optical activity Raman scattering is mentioned: [Pg.319]    [Pg.76]    [Pg.153]    [Pg.16]    [Pg.152]    [Pg.319]    [Pg.38]    [Pg.212]    [Pg.151]    [Pg.456]    [Pg.812]    [Pg.1214]    [Pg.431]    [Pg.34]    [Pg.164]    [Pg.72]    [Pg.78]    [Pg.221]    [Pg.398]    [Pg.228]    [Pg.103]    [Pg.115]    [Pg.440]    [Pg.58]    [Pg.92]    [Pg.52]    [Pg.191]    [Pg.1497]    [Pg.599]    [Pg.2709]    [Pg.302]    [Pg.153]    [Pg.165]    [Pg.302]    [Pg.399]    [Pg.352]    [Pg.75]   
See also in sourсe #XX -- [ Pg.55 , Pg.60 , Pg.74 , Pg.92 ]




SEARCH



Active vibrations

Optical Raman

Optical scatter

Raman active vibrations

Raman activity

Raman optical activity

Raman scattering

Raman scattering activities

Scattering activity

Scattering optical

Vibrational Raman optical activity

Vibrational Raman scattering

© 2024 chempedia.info