Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electric quadrupole optical activity tensor

The occurrence of Raman scattering is connected to the change in polarizability during the transition of the molecule from one vibrational state to the other. Circular polarization ROA arises from interference of the electric dipole electric dipole polarizability tensor with the electric dipole - magnetic dipole and the electric dipole electric quadrupole optical activity tensors. Due to limited space, no rigorous derivation of the theory will be given here, but only the most important results shall be shown. [Pg.565]

Ordinary Raman scattering is determined by derivatives of the electric dipole-electric dipole tensor ae, and ROA by derivatives of cross-products of this tensor with the imaginary part G,e of the electric dipole-magnetic dipole tensor (the optical activity tensor) and the tensor Ae which results from the double contraction of the third rank electric dipole-electric quadrupole tensor Ae with the third rank antisymmetric unit tensor s of Levi-Civita. The electronic property tensors have the form ... [Pg.224]

Some of those have long been known a is the electric dipole polarizability (a symmetric polar tensor of dimension P) in length formalism, k (an asymmetric axial tensor of dimension P t) is related to the optical activity, A is the mixed dipole-quadrupole polarizability, x is the magnetic susceptibility (or magnetizability), written as a sum of diamagnetic and paramagnetic components. [Pg.524]

Symmetry arguments show that parity-odd, time-even molecular properties which have a non-vanishing isotropic part underlie chirality specific experiments in liquids. In linear optics it is the isotropic part of the optical rotation tensor, G, that gives rise to optical rotation and vibrational optical activity. Pseudoscalars can also arise in nonlinear optics. Similar to tlie optical rotation tensor, the odd-order susceptibilities require magnetic-dipole (electric-quadrupole) transitions to be chirally sensitive. [Pg.378]

The theoretical framework developed above is valid in the electric dipole approximation. In this context, it is assumed that the nonlinear polarization PfL(2 >) is reduced to the electric dipole contribution as given in Eq. (1). This assumption is only valid if the surface susceptibility tensor x (2 > >, a>) is large enough to dwarf the contribution from higher orders of the multipole expansion like the electric quadrupole contribution and is therefore the simplest approximation for the nonlinear polarization. At pure solvent interfaces, this may not be the case, since the nonlinear optical activity of solvent molecules like water, 1,2-dichloroethane (DCE), alcohols, or alkanes is rather low. The magnitude of the molecular hyperpolarizability of water, measured by DC electric field induced second harmonic... [Pg.126]

More details of this development, including the extension to the higher-order tensors containing magnetic dipole and electric quadrupole transition moments that are resonsible for optical activity phenomena, can be found elsewhere [l2.l. [Pg.251]

In the optical activity arising from higher-order cross-terms, the effects are in most cases expected to be orientation-dependent. Pseudoscalar terms are the only ones which survive in random orientation (molecules in solution or liquid phase). At the same order of perturbation as El-Ml there is a product of the electric dipole and electric quadrupole transition operators (E1-E2). Since the latter product involves tensors of unequal rank, the result cannot be a pseudoscalar and this term would not, therefore, contribute in random orientation but can be significant for oriented systems with quadrupole-allowed transitions. The E1-E2 mechanism was developed by Buckingham and Dunn and recognized by Barron" as a potential contribution to the visible CD in oriented crystals containing the [Co(en)3] " ion. [Pg.67]


See other pages where Electric quadrupole optical activity tensor is mentioned: [Pg.78]    [Pg.124]    [Pg.155]    [Pg.566]    [Pg.22]    [Pg.78]    [Pg.124]    [Pg.155]    [Pg.566]    [Pg.22]    [Pg.125]    [Pg.17]   
See also in sourсe #XX -- [ Pg.124 ]




SEARCH



Electric activation

Electric optical

Electrical activation

Electrical activity

Optical activity tensors

Optical tensors

Tensors quadrupole

© 2024 chempedia.info