Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared absorption, vibrational

Vibrational infrared Absorption of radiation due to dipole change during vibration (A - 10—10— cm) Qualitative for large molecules 10- 3 S 100 Pa (1 torrl Useful for characterization. Some structural information from number of bands, position, and possibly isotope effects. All States of matter... [Pg.131]

We elected to study coherent up-pumping dynamics in solution-phase metal-hexacarbonyl systems because of their strong vibrational infrared absorption cross sections, relatively simple ground-state spectra, and small (ca. 15 cm ) anharmonic overtone shifts. It was felt that these systems are ideal candidates to demonstrate that population control could be achieved for polyatomic species in solution because the excited state population... [Pg.146]

Vibrational infrared Absorption of radiation due to dipoie change during vibr< lon (A - 10- -10- cm)... [Pg.131]

Vibrational infrared Absorption of radiation Qualitative for large due to dipole change molecules... [Pg.238]

Vibrational Spectroscopy. Infrared absorption spectra may be obtained using convention IR or FTIR instrumentation the catalyst may be present as a compressed disk, allowing transmission spectroscopy. If the surface area is high, there can be enough chemisorbed species for their spectra to be recorded. This approach is widely used to follow actual catalyzed reactions see, for example. Refs. 26 (metal oxide catalysts) and 27 (zeolitic catalysts). Diffuse reflectance infrared reflection spectroscopy (DRIFT S) may be used on films [e.g.. Ref. 28—Si02 films on Mo(llO)]. Laser Raman spectroscopy (e.g.. Refs. 29, 30) and infrared emission spectroscopy may give greater detail [31]. [Pg.689]

Spectroscopic detemiination of the HE rotational distribution is another story. In both the chemical laser and infrared chemiluminescence experiments, rotational relaxation due to collisions is faster or at least comparable to the time scale of the measurements, so that accurate detemiination of the nascent rotational distribution was not feasible. However, Nesbitt [40, 41] has recently carried out direct infrared absorption experiments on the HE product under single-collision conditions, thereby obtaining a fiill vibration-rotation distribution for the nascent products. [Pg.876]

Almost every modem spectroscopic approach can be used to study matter at high pressures. Early experiments include NMR [ ], ESR [ ] vibrational infrared [33] and Raman [ ] electronic absorption, reflection and emission [23, 24 and 25, 70] x-ray absorption [Tf] and scattering [72], Mossbauer [73] and gems analysis of products recovered from high-pressure photochemical reactions [74]. The literature contains too many studies to do justice to these fields by describing particular examples in detail, and only some general mles, appropriate to many situations, are given. [Pg.1961]

Recently, the state-selective detection of reaction products tluough infrared absorption on vibrational transitions has been achieved and applied to the study of HF products from the F + H2 reaction by Nesbitt and co-workers (Chapman et al [7]). The relatively low sensitivity for direct absorption has been circumvented by the use of a multi-pass absorption arrangement with a narrow-band tunable infrared laser and dual beam differential detection of the incident and transmission beams on matched detectors. A particular advantage of probing the products tluough absorption is that the absolute concentration of the product molecules in a given vibration-rotation state can be detenuined. [Pg.2085]

Polyatomic molecules vibrate in a very complicated way, but, expressed in temis of their normal coordinates, atoms or groups of atoms vibrate sinusoidally in phase, with the same frequency. Each mode of motion functions as an independent hamionic oscillator and, provided certain selection rules are satisfied, contributes a band to the vibrational spectr um. There will be at least as many bands as there are degrees of freedom, but the frequencies of the normal coordinates will dominate the vibrational spectrum for simple molecules. An example is water, which has a pair of infrared absorption maxima centered at about 3780 cm and a single peak at about 1580 cm (nist webbook). [Pg.288]

The above figure shows part of the infrared absorption spectrum of HCN gas. The molecule has a CH stretching vibration, a bending vibration, and a CN stretching vibration. [Pg.443]

Infrared absorption properties of 2-aminothiazole were reported with those of 52 other thiazoles (113). N-Deuterated 2-aminothiazole and 2-amino-4-methylthiazo e were submitted to intensive infrared investigations. All the assignments were performed using gas-phase studies of the shape of the vibration-rotation bands, dichroism, isotopic substitution, and separation of frequencies related to H-bonded and free species (115). With its ten atoms, this compound has 24 fundamental vibrations 18 for the skeleton and 6 for NHo. For the skeleton (Cj symmetry) 13 in-plane vibrations of A symmetry (2v(- h, 26c-h- Irc-N- and 7o)r .cieu.J and... [Pg.23]

The second ring vibration gives rise to a very weak infrared absorption band at 467 cm and to a weak and depolarized Raman line at 470 cm (202, 203) (Table 1-23). [Pg.61]

One type of single point calculation, that of calculating vibrational properties, is distinguished as a vibrations calculation in HyperChem. A vibrations calculation predicts fundamental vibrational frequencies, infrared absorption intensities, and normal modes for a geometry optimized molecular structure. [Pg.16]

Just as group vibration wavenumbers are fairly constant from one molecule to another, so are their intensities. For example, if a molecule were being tested for the presence of a C—F bond there must be not only an infrared absorption band due to bond-stretching at about 1100 cm but also it must be intense. A weak band in this region might be attributable to another normal mode. [Pg.158]

Normal modes of vibration, with their corresponding normal coordinates, are very satisfactory in describing the low-lying vibrational levels, usually those with u = 1 or 2, which can be investigated by traditional infrared absorption or Raman spectroscopy. For certain types of vibration, particularly stretching vibrations involving more than one symmetrically equivalent terminal atom, this description becomes less satisfactory as v increases. [Pg.187]

Fig. 3. Infrared absorption data for the four tricresyl phosphate isomers present in hydrauHc oil. a, Trimetacresyl phosphate b, metametaparacresyl phosphate c, metaparaparacresyl phosphate d, triparacresyl phosphate. The P=0 stretch between 1300 and 1350 cm is marked as is the phenyl—phosphate vibration around 965 cm . Also included are the metacresyl (875 cm ) and paracresyl (820 cm ) frequencies. Fig. 3. Infrared absorption data for the four tricresyl phosphate isomers present in hydrauHc oil. a, Trimetacresyl phosphate b, metametaparacresyl phosphate c, metaparaparacresyl phosphate d, triparacresyl phosphate. The P=0 stretch between 1300 and 1350 cm is marked as is the phenyl—phosphate vibration around 965 cm . Also included are the metacresyl (875 cm ) and paracresyl (820 cm ) frequencies.
If we further assume that the vibrational wavefunctions associated with normal mode i are the usual harmonic oscillator ones, and r = u + 1, then the integrated intensity of the infrared absorption band becomes... [Pg.276]

Infrared absorption spectra of heteropyrans have been used mainly for the identification of functional groups. Assignments of the bands belonging to heterocyclic bond vibrations (C=C, C—S, C—Se, C—Te) have not been common. As a rule, 4W-heteropyrans exhibit maxima at higher wave numbers than 2//-isomers. Typical IR absorption maxima for heteropyrans are shown in Table X. [Pg.235]

For a vibration to give rise to an infrared absorption there must be a change in the direction or magnitude of a dipole moment associated with that vibration. [Pg.298]

Spectral changes on adsorption are of three types appearance of inactive fundamentals (often coincident with infrared absorptions—see Table IX), shifts in Raman line positions for active vibrations, changes in relative peak intensities, and changes in half-bandwidths. The first three types of change have been reported for centrosymmetric adsorbates. [Pg.335]

If the resolving capacity of the instruments is ideal then vibrational-rotational absorption and Raman spectra make it possible in principle to divide and study separately vibrational and orientational relaxation of molecules in gases and liquids. First one transforms the observed spectrum of infrared absorption FIR and that of Raman scattering FR into spectral functions... [Pg.60]

In a KI matrix the electronic absorption maximum of 82 - is observed at 400 nm, and the 88 stretching vibration by a Raman line at 594 cm k 83 shows a Raman line at 546 cm and an infrared absorption at 585 cm which were assigned to the symmetric and antisymmetric stretching vibrations, respectively. The bromides and iodides of Na, K, and Rb have also been used to trap 82 - but the wavenumbers of the 88 stretching vibration differ by as much as 18 cm- from the value in KI. The anion S3- has been trapped in the chlorides, bromides and iodides of Na, K, and Rb [120]. While the disulfide monoanion usually occupies a single anion vacancy [116, 122], the trisulfide radical anion prefers a trivacancy (one cation and two halide anions missing) [119]. [Pg.146]

The SO stretching vibration gives rise to a very strong infrared absorption at 1112 cm (in CHBr3), and Raman lines of medium intensity have been observed at 1092 cm for a-SsO and at 1102 cm for PS O. The SS stretch-... [Pg.214]

Fig.2 shows the infrared absorption spectrum of the tin oxide film. In order to analyze the molecular structure of the deposited film, we deposited the tin oxide film on a KBr disc with thickness of 1 mm and diameter of 13 mm. Various peaks formed by surface reaction are observed including O-H stretching mode at 3400 cm, C=C stretching mode at 1648 cm, and Sn02 vibration mode at 530 cm. The formation of sp structure with graphite-like is due to ion bombardment with hydrogen ions at the surface and plasma polymerization of methyl group with sp -CHa. [Pg.386]

Complementary to other methods that constimte a basis for the investigation of molecular dynamics (Raman scattering, infrared absorption, and neutron scattering), NIS is a site- and isotope-selective technique. It yields the partial density of vibrational states (PDOS). The word partial refers to the selection of molecular vibrations in which the Mossbauer isotope takes part. The first NIS measurements were performed in 1995 to constitute the method and to investigate the PDOS of... [Pg.516]

Infrared absorption and Raman 0.78-300 rm 1.3 x 104-3.3 x 101 Rotation/vibration of molecules... [Pg.300]

A molecule is composed of a certain number N of nuclei and usually a much larger number of electrons. As the masses of the electrons and the nuclei are significantly different, the much lighter elections move rapidly to create the so-called electron cloud which sticks die nuclei into relatively fixed equilibrium positions. The resulting geometry of die nuclear configuration is usually referred to as the molecular structure. The vibrational and rotational spectra of a molecule, as observed in its infrared absorption or emission and the Raman effect, are determined by this molecular geometry. [Pg.323]


See other pages where Infrared absorption, vibrational is mentioned: [Pg.274]    [Pg.21]    [Pg.522]    [Pg.274]    [Pg.21]    [Pg.522]    [Pg.584]    [Pg.374]    [Pg.11]    [Pg.208]    [Pg.148]    [Pg.422]    [Pg.425]    [Pg.330]    [Pg.433]    [Pg.249]    [Pg.294]    [Pg.242]    [Pg.151]    [Pg.25]    [Pg.375]    [Pg.100]    [Pg.124]    [Pg.54]    [Pg.344]    [Pg.26]   
See also in sourсe #XX -- [ Pg.54 , Pg.251 ]




SEARCH



Absorption infrared

Absorption spectra near-infrared, vibrational-rotational

Absorptivity, infrared

Infrared absorption, vibrational modes

Molecular vibrations infrared absorption

Surface vibrational spectroscopy reflection-absorption infrared spectra

Vibrational Spectroscopy. Infrared Absorption. Raman Spectra

Vibrational absorption

Vibrational infrared

Vibrational spectroscopy infrared absorption

Vibrational state, infrared energy absorption

© 2024 chempedia.info