Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibration diagram method

Vibration Diagram Method. In actuality the last cases above are not described accurately by this dipole array model because actual phases of the electric fields are significantly altered from those of linear waves. (A more realistic, but complex model is to consider amplitude and phase characteristics of the oscillating vertically polarized component of electric field resulting from rotation of a line of transverse dipoles of equal magnitude but rotated relative to each other along the line such that their vertical components at some reference time are depicted by Figure 2.) For this reason and to handle details of focused laser beams one must resort to a more mathematically based description. Fortunately, numerical... [Pg.39]

Figure 15.6 is a schematic diagram of an AFM with an optical interferometer (Erlandsson et al., 1988). The lever is driven by a lever oscillator through a piezoelectric transducer. The detected force gradient F is compared with a reference value, to drive the z piezo through a controller. In addition to the vibrating lever method, the direct detection of repulsive atomic force through the deflection of the lever is also demonstrated. [Pg.321]

Fig. 7. Schematic diagram for the single cantilever beam apparatus for measurement of the complex Young s modulus. (A forced vibration nonresonance method.)... Fig. 7. Schematic diagram for the single cantilever beam apparatus for measurement of the complex Young s modulus. (A forced vibration nonresonance method.)...
Velocity transducers are electro-mechanical sensors designed to monitor casing, or relative, vibration. Unlike displacement probes, velocity transducers measure the rate of displacement rather than the distance of movement. Velocity is normally expressed in terms of inches per second (ips) peak, which is perhaps the best method of expressing the energy caused by machine vibration. Figure 43.22 is a schematic diagram of a velocity measurement device. [Pg.688]

Hyper-Raman spectroscopy is not a surface-specific technique while SFG vibrational spectroscopy can selectively probe surfaces and interfaces, although both methods are based on the second-order nonlinear process. The vibrational SFG is a combination process of IR absorption and Raman scattering and, hence, only accessible to IR/Raman-active modes, which appear only in non-centrosymmetric molecules. Conversely, the hyper-Raman process does not require such broken centrosymmetry. Energy diagrams for IR, Raman, hyper-Raman, and vibrational SFG processes are summarized in Figure 5.17. [Pg.94]

Just as above, we can derive expressions for any fluorescence lifetime for any number of pathways. In this chapter we limit our discussion to cases where the excited molecules have relaxed to their lowest excited-state vibrational level by internal conversion (ic) before pursuing any other de-excitation pathway (see the Perrin-Jablonski diagram in Fig. 1.4). This means we do not consider coherent effects whereby the molecule decays, or transfers energy, from a higher excited state, or from a non-Boltzmann distribution of vibrational levels, before coming to steady-state equilibrium in its ground electronic state (see Section 1.2.2). Internal conversion only takes a few picoseconds, or less [82-84, 106]. In the case of incoherent decay, the method of excitation does not play a role in the decay by any of the pathways from the excited state the excitation scheme is only peculiar to the method we choose to measure the fluorescence (Sections 1.7-1.11). [Pg.46]

Fig. 6.8. A Principle of frequency-multiplexed CARS microspectroscopy A narrow-bandwidth pump pulse determines the inherent spectral resolution, while a broad-bandwidth Stokes pulse allows simultaneous detection over a wide range of Raman shifts. The multiplex CARS spectra shown originate from a 70 mM solution of cholesterol in CCI4 (solid line) and the nonresonant background of coverglass (dashed line) at a Raman shift centered at 2900 cm-1. B Energy level diagram for a multiplex CARS process. C Schematic of the multiplex CARS microscope (P polarizer HWP/QWP half/quarter-wave plate BC dichroic beam combiner Obj objective lens F filter A analyzer FM flip mirror L lens D detector S sample). D Measured normalized CARS spectrum of the cholesterol solution. E Maximum entropy method (MEM) phase spectrum (solid line) retrieved from (D) and the error background phase (dashed line) determined by a polynomial fit to those spectral regions without vibrational resonances. F Retrieved Raman response (solid line) calculated from the spectra shown in (E), directly reproducing the independently measured spontaneous Raman response (dashed line) of the same cholesterol sample... Fig. 6.8. A Principle of frequency-multiplexed CARS microspectroscopy A narrow-bandwidth pump pulse determines the inherent spectral resolution, while a broad-bandwidth Stokes pulse allows simultaneous detection over a wide range of Raman shifts. The multiplex CARS spectra shown originate from a 70 mM solution of cholesterol in CCI4 (solid line) and the nonresonant background of coverglass (dashed line) at a Raman shift centered at 2900 cm-1. B Energy level diagram for a multiplex CARS process. C Schematic of the multiplex CARS microscope (P polarizer HWP/QWP half/quarter-wave plate BC dichroic beam combiner Obj objective lens F filter A analyzer FM flip mirror L lens D detector S sample). D Measured normalized CARS spectrum of the cholesterol solution. E Maximum entropy method (MEM) phase spectrum (solid line) retrieved from (D) and the error background phase (dashed line) determined by a polynomial fit to those spectral regions without vibrational resonances. F Retrieved Raman response (solid line) calculated from the spectra shown in (E), directly reproducing the independently measured spontaneous Raman response (dashed line) of the same cholesterol sample...
Schematic energy level diagrams for the most widely used probe methods are shown in Fig. 1. In each case, light of a characteristic frequency is scattered, emitted, and/or absorbed by the molecule, so that a measurement of that frequency serves to identify the molecule probed. The intensity of scattered or emitted radiation can be related to the concentration of the molecule responsible. From measurements on different internal quantum states (vibrational and/or rotational) of the system, a population distribution can be obtained. If that degree of freedom is in thermal equilibrium within the flame, a temperature can be deduced if not, the population distribution itself is then of direct interest. Schematic energy level diagrams for the most widely used probe methods are shown in Fig. 1. In each case, light of a characteristic frequency is scattered, emitted, and/or absorbed by the molecule, so that a measurement of that frequency serves to identify the molecule probed. The intensity of scattered or emitted radiation can be related to the concentration of the molecule responsible. From measurements on different internal quantum states (vibrational and/or rotational) of the system, a population distribution can be obtained. If that degree of freedom is in thermal equilibrium within the flame, a temperature can be deduced if not, the population distribution itself is then of direct interest.
The properties of the various Feynman diagrams that contribute to the vibrational echo can often be measured separately by means of time resolution of the spectrally resolved echo. The time t3 can be experimentally controlled by a variety of methods. One way is to time gate the echo field, which... [Pg.317]

Figure 7. Schematic energy level diagram showing the principle of the ionization method for detecting electron transfer in gas-phase adducts. Naphthalene cation (the hole donor) is formed by resonance-enhanced two-photon ionization of the neutral. A hole acceptor, whose ionization potential is lower than that of naphthalene, is not ionized, since its S level is not resonant with the UV photons used (vi). The vibrational levels of the ionic form of the acceptor are resonant with the naphthalene cation, and accept the hole easily. Detection is by photodissociation, using photons of different frequency (V2) that dissociate the naphthalene cation in a resonance-enhanced multiphoton absorption process. Charge transfer is detected by the diminution of the product ion signal in the presence of a suitable acceptor. Adapted from Ref. [32]. Figure 7. Schematic energy level diagram showing the principle of the ionization method for detecting electron transfer in gas-phase adducts. Naphthalene cation (the hole donor) is formed by resonance-enhanced two-photon ionization of the neutral. A hole acceptor, whose ionization potential is lower than that of naphthalene, is not ionized, since its S level is not resonant with the UV photons used (vi). The vibrational levels of the ionic form of the acceptor are resonant with the naphthalene cation, and accept the hole easily. Detection is by photodissociation, using photons of different frequency (V2) that dissociate the naphthalene cation in a resonance-enhanced multiphoton absorption process. Charge transfer is detected by the diminution of the product ion signal in the presence of a suitable acceptor. Adapted from Ref. [32].
The mechanism of a reaction is described as the structure and energy of a system of molecules in progress from reactants to products. This representation gives rise to an expectation that experimental methods should indicate the structures as shown in static diagrams it obscures the fact that the experimental techniques refer to assemblies of structures each of which has rotational, vibrational and translational activity. [Pg.3]


See other pages where Vibration diagram method is mentioned: [Pg.40]    [Pg.40]    [Pg.40]    [Pg.49]    [Pg.24]    [Pg.60]    [Pg.9]    [Pg.1214]    [Pg.251]    [Pg.124]    [Pg.287]    [Pg.495]    [Pg.25]    [Pg.423]    [Pg.188]    [Pg.138]    [Pg.32]    [Pg.255]    [Pg.269]    [Pg.285]    [Pg.44]    [Pg.250]    [Pg.34]    [Pg.327]    [Pg.181]    [Pg.192]    [Pg.167]    [Pg.432]    [Pg.613]    [Pg.29]    [Pg.130]    [Pg.208]    [Pg.210]    [Pg.212]    [Pg.277]    [Pg.247]   
See also in sourсe #XX -- [ Pg.39 , Pg.40 , Pg.41 , Pg.42 ]




SEARCH



© 2024 chempedia.info