Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vascular system autonomic control

There are two classes of movements in the human body voluntary and involuntary. Voluntary movements are pretty clear they are the movements that we can control. Reaching for the French fries, swinging a baseball bat, turning on the TV, and typing at a computer keyboard provide obvious examples. Involuntary movements include those movements that we cannot readily control such as heart beats, vascular contraction, and movement of the gut muscles, and they basically control the internal environment of the body. Voluntary movements are controlled by the somatic nervous system. Involuntary movements are controlled by the autonomic nervous system, to which we now turn. [Pg.296]

Autonomic and hormonal control of cardiovascular function. Note that two feedback loops are present the autonomic nervous system loop and the hormonal loop. The sympathetic nervous system directly influences four major variables peripheral vascular resistance, heart rate, force, and venous tone. It also directly modulates renin production (not shown). The parasympathetic nervous system directly influences heart rate. In addition to its role in stimulating aldosterone secretion, angiotensin II directly increases peripheral vascular resistance and facilitates sympathetic effects (not shown). The net feedback effect of each loop is to compensate for changes in arterial blood pressure. Thus, decreased blood pressure due to blood loss would evoke increased sympathetic outflow and renin release. Conversely, elevated pressure due to the administration of a vasoconstrictor drug would cause reduced sympathetic outflow, reduced renin release, and increased parasympathetic (vagal) outflow. [Pg.122]

Physiologically, in both normal and hypertensive individuals, blood pressure is maintained by moment-to-moment regulation of cardiac output and peripheral vascular resistance, exerted at three anatomic sites (Figure 11-1) arterioles, postcapillary venules (capacitance vessels), and heart. A fourth anatomic control site, the kidney, contributes to maintenance of blood pressure by regulating the volume of intravascular fluid. Baroreflexes, mediated by autonomic nerves, act in combination with humoral mechanisms, including the renin-angiotensin-aldosterone system, to coordinate function at these four control sites and to maintain normal blood pressure. Finally, local release of vasoactive substances from vascular endothelium may also be involved in the regulation of vascular resistance. For example, endothelin-1 (see Chapter 17) constricts and nitric oxide (see Chapter 19) dilates blood vessels. [Pg.222]

The afferent neurons of the autonomic nervous system are important in the reflex regulation, for example, by sensing pressure in the carotid sinus and aortic arch and signaling the CNS to influence the efferent branch of the system to respond. Conditions such as trauma, fear, hypoglycemia, cold, or exercise activate the sympathetic neurons. Both sympathetic and parasympathetic neurons emerge from the brain stem or spinal cord. Blood pressure is regulated largely by sympathetic control of vascular tone. [Pg.45]

Because capillary walls are thin (to permit diffusion) the blood that is delivered to them must be delivered under reduced pressure. This is accomplished by the arterioles, which combine relatively muscular walls with a narrow lumen. The arterial blood pressure is a function of cardiac output and the total peripheral vascular resistance, which is primarily a function of the degree of normal tension (tonus) of the smooth muscle cells in the walls of the arterioles. If this tonus increases above the normal range for extended periods of time, hypertension (high blood pressure) will result. This tonus is under the control of the autonomic nervous system and of adrenergic hormones (catecholamines). [Pg.480]

The gastrointestinal (GI) tract is in a continuous contractile, absorptive, and secretory state. The control of this state is complex, with contributions by the muscle itself, local nerves (i.e., the enteric nervous system, ENS), the central nervous system (CNS), and humoral pathways. Of these, perhaps the most important regulator of physiological gut function is the ENS (Figure 37-1), which is an autonomous collection of nerves within the wall of the Gl tract, organized into two connected networks of neurons the myenteric (Auerbach s) plexus, found between the circular and longitudinal muscle layers, and the submucosal (Meissner s) plexus, found below the epithehum. The former is responsible for motor control, while the latter regulates secretion, fluid transport, and vascular flow. [Pg.633]


See other pages where Vascular system autonomic control is mentioned: [Pg.196]    [Pg.455]    [Pg.106]    [Pg.222]    [Pg.77]    [Pg.30]    [Pg.120]    [Pg.112]    [Pg.465]    [Pg.30]    [Pg.146]    [Pg.34]    [Pg.14]    [Pg.39]    [Pg.537]    [Pg.34]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



AutoNom

Autonomation

Autonomic

Autonomic system

Autonomous

Autonomous systems

Vascular systems

© 2024 chempedia.info