Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor pressure, various compounds

The ability to predict the behavior of a chemical substance in a biological or environmental system largely depends on knowledge of the physical-chemical properties and reactivity of that compound or closely related compounds. Chemical properties frequently used in environmental assessment include melting/boiling temperature, vapor pressure, various partition coefficients, water solubility, Henry s Law constant, sorption coefficient, bioconcentration factor, and diffusion properties. Reactivities by processes such as biodegradation, hydrolysis, photolysis, and oxidation/reduction are also critical determinants of environmental fate and such information may be needed for modeling. Unfortunately, measured values often are not available and, even if they are, the reported values may be inconsistent or of doubtful validity. In this situation it may be appropriate or even essential to use estimation methods. [Pg.5]

Table 5.8 Vapor Pressures of Various Inorganic Compounds 5.31... Table 5.8 Vapor Pressures of Various Inorganic Compounds 5.31...
Table 5.9 Vapor Pressures of Various Organic Compounds 5.39... Table 5.9 Vapor Pressures of Various Organic Compounds 5.39...
Phase Behavior. One of the pioneering works detailing the phase behavior of ternary systems of carbon dioxide was presented ia the early 1950s (12) and consists of a compendium of the solubiHties of over 260 compounds ia Hquid (21—26°C) carbon dioxide. This work contains 268 phase diagrams for ternary systems. Although the data reported are for Hquid CO2 at its vapor pressure, they yield a first approximation to solubiHties that may be encountered ia the supercritical region. Various additional sources of data are also available (1,4,7,13). [Pg.221]

Various methods are available for estimation of the normal boiling point of organic compounds. Lyman et al. review and give calcula-tional procedures for the methods of Meissner, Miller, and Lydersen/ Forman-Thodos. A more recent method that has been determined to be more accurate is the method of Pailhes, which reqmres one experimental vapor pressure point and Lydersen group contributions for critical temperature and critical pressure (Table 2-385). [Pg.389]

One of the most important characteristics of IL is its wide temperature range for the liquid phase with no vapor pressure, so next we tested the lipase-catalyzed reaction under reduced pressure. It is known that usual methyl esters are not suitable for lipase-catalyzed transesterification as acyl donors because reverse reaction with produced methanol takes place. However, we can avoid such difficulty when the reaction is carried out under reduced pressure even if methyl esters are used as the acyl donor, because the produced methanol is removed immediately from the reaction mixture and thus the reaction equilibrium goes through to produce the desired product. To realize this idea, proper choice of the acyl donor ester was very important. The desired reaction was accomplished using methyl phenylth-ioacetate as acyl donor. Various methyl esters can also be used as acyl donor for these reactions methyl nonanoate was also recommended and efficient optical resolution was accomplished. Using our system, we demonstrated the completely recyclable use of lipase. The transesterification took place smoothly under reduced pressure at 10 Torr at 40°C when 0.5 equivalent of methyl phenylthioacetate was used as acyl donor, and we were able to obtain this compound in optically pure form. Five repetitions of this process showed no drop in the reaction rate (Fig. 4). Recently Kato reported nice additional examples of lipase-catalyzed reaction based on the same idea that CAL-B-catalyzed esterification or amidation of carboxylic acid was accomplished under reduced pressure conditions. ... [Pg.7]

The order of the mobilities of alachlor, butylate, and metolachlor in columns of various soils was metolachlor > alachlor > butylate. This correlates directly with the water solubilities and inversely to the adsorption coefficients and octanol/water partition coefficients of these compounds. Diffusion of these compounds in soil thin-layers was as follows butylate > alachlor > metolachlor, which correlates directly with the vapor pressures of these compounds. Significant soil properties affecting diffusion appeared to be bulk density and temperature. Soil moisture is also probably important, but its effect on the diffusion of these compounds was not determined. [Pg.231]


See other pages where Vapor pressure, various compounds is mentioned: [Pg.118]    [Pg.327]    [Pg.387]    [Pg.13]    [Pg.182]    [Pg.43]    [Pg.285]    [Pg.507]    [Pg.240]    [Pg.105]    [Pg.30]    [Pg.242]    [Pg.68]    [Pg.92]    [Pg.212]   


SEARCH



Vapor pressure compounds

Various compounds

© 2024 chempedia.info