Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor cloud overpressures

Understanding how sudden pressure releases can occur is important. They can happen, for example, from ruptured high-pressure tanks, runaway reactions, flammable vapor clouds, or pressure developed from external fire. The proper design of pressure rehef systems can reduce the possibility of losses from unintended overpressure. [Pg.2266]

Pressure Development Overpressure in a UVCE results from turbulence that promotes a sudden release of energy. Tests in the open without obstacles or confining structures do not produce damaging overpressure. Nevertheless, combustion in a vapor cloud within a partially confined space or around turbulence-producing obstacles may generate damaging overpressure. Also, turbulence in a jet release, such as may occur with compressed natural gas discharged from a ruptured pipehne, may result in blast pressure. [Pg.2320]

Vapor Cloud Explosion (VCE) Explosive oxidation of a vapor cloud in a non-confined space (not in vessels, buildings, etc.). The flame speed may accelerate to high velocities and produce significant blast overpressure. Vapor cloud explosions in plant areas with dense equipment layouts may show acceleration in flame speed and intensification of blast. [Pg.166]

Vapor cloud explosions can cause damaging overpressures (CCPS, 1994b). [Pg.58]

If a large amount of a volatile flammable material is rapidly dispersed to the atmo vapor cloud forms. If this cloud is ignited before the cloud is diluted below its lower flammability limit, a UVCE occurs which can damage by overpressure or by thermal radiation. Rarely are UVCEs detonations it is believed that obstacles, turbulence, and possibly a critical cloud size are needed to transition from deflagration to detonation. [Pg.339]

A vapor cloud explosion may be simply defined as an explosion occurring outdoors, producing a damaging overpressure (Factory Mutual Research Corporation, 1990). [Pg.3]

It begins with the release of a large quantity of flammable vaporizing liquid or gas from a storage tank, process or transport vessel, or pipeline. Generally speaking, several features need to be present for a vapor cloud explosion with damaging overpressure to occur. [Pg.4]

A deflagration can best be described as a combustion mode in which the propagation rate is dominated by both molecular and turbulent transport processes. In the absence of turbulence (i.e., under laminar or near-laminar conditions), flame speeds for normal hydrocarbons are in the order of 5 to 30 meters per second. Such speeds are too low to produce any significant blast overpressure. Thus, under near-laminar-flow conditions, the vapor cloud will merely bum, and the event would simply be described as a large fiash fire. Therefore, turbulence is always present in vapor cloud explosions. Research tests have shown that turbulence will significantly enhance the combustion rate in defiagrations. [Pg.4]

Making a detailed estimate of the full loading of an object by a blast wave is only possible by use of multidimensional gas-dynamic codes such as BLAST (Van den Berg 1990). However, if the problem is sufficiently simplified, analytic methods may do as well. For such methods, it is sufficient to describe the blast wave somewhere in the field in terms of the side-on peak overpressure and the positive-phase duration. Blast models used for vapor cloud explosion blast modeling (Section 4.3) give the distribution of these blast parameters in the explosion s vicinity. [Pg.58]

Figure 4.7. Maximum overpressure in vapor cloud explosions after critical-flow propane jet release dependent on orifice diameter (a) undisturbed jet (b) jet into obstacles and confinement. Figure 4.7. Maximum overpressure in vapor cloud explosions after critical-flow propane jet release dependent on orifice diameter (a) undisturbed jet (b) jet into obstacles and confinement.
This equation shows that the maximum overpressure, generated by a constant velocity flame fkmt, continually decreases as it propagates. Modeling an explosion of an extended flat vapor cloud by a single monopole located in the cloud s center is not, however, very realistic. [Pg.96]

The very first stage of flame propagation upon ignition, during which the flame has a spherical shape, mainly determines the blast peak overpressure produced by the entire vapor cloud explosion. [Pg.109]

To allow for spray- and aerosol-formation, the mass of fuel in the cloud is assumed to be twice the theoretical flash of the amount of material released, so long as this quantity does not exceed the total amount of fuel available. Blast effects are modeled by means of TNT blast data according to Marshall (1976), while 1 bar is considered to be upper limit for the in-cloud overpressure (Figure 4.18). Because experience indicates that vapor clouds which are most likely to explode... [Pg.117]

On the basis of an extended experimental program described in Section 4.1.3, Harris and Wickens (1989) concluded that overpressure effects produced by vapor cloud explosions are largely determined by the combustion which develops only in the congested/obstructed areas in the cloud. For natural gas, these conclusions were used to develop an improved TNT-equivalency method for the prediction of vapor cloud explosion blast. This approach is no longer based on the entire mass of flammable material released, but on the mass of material that can be contained in stoichiometric proportions in any severely congested region of the cloud. [Pg.122]

Figure 4.20. Dimensionless blast side-on overpressure for vapor cloud explosions (Strehlow etal. 1979). Figure 4.20. Dimensionless blast side-on overpressure for vapor cloud explosions (Strehlow etal. 1979).
Explosively Dispersed Vapor Cloud Explosions (Giesbrecht et al. 1981). The Giesbrecht et al. (1981) model is based on a series of small-scale experiments in which vessels of various sizes (0.226-10001) containing propylene were ruptured. (See Section 4.1.2, especially Figure 4.5.) Flame speed, maximum overpressure, and positive-phase duration observed in explosively dispersed clouds are represented as a function of fuel mass. [Pg.134]

Overpressure within a vapor cloud is dependent upon outflow velocity, orifice diameter, and laminar flame speed expressed in the following semi-empirical relation ... [Pg.134]

As described in Section 6.2.1., British Gas performed full-scale tests with LPG BLEVEs similar to those conducted by BASF. The experimenters measured very low overpressures firom the evaporating liquid, followed by a shock that was probably the so-called second shock, and by the pressure wave from the vapor cloud explosion (see Figure 6.6). The pressure wave firom the vapor cloud explosion probably resulted from experimental procedures involving ignition of the release. The liquid was below the superheat limit temperature at time of burst. [Pg.200]

TNT-equi valency methods express explosive potential of a vapor cloud in terms of a charge of TNT. TNT-blast characteristics are well known fiom empirical data both in the form of blast parameters (side-on peak overpressure and positive-phase duration) and of corresponding damage potential. Because the value of TNT-equiva-lency used for blast modeling is directly related to damage patterns observed in major vapor cloud explosion incidents, the TNT-blast model is attractive if overall damage potential of a vapor cloud is the only concern. [Pg.248]

TABLE 7.2. Side-On Peak Overpressure for Several Distances from Charge Expressing Explosive Potential of a Vapor Cloud at a Storage Site for Liquefied Hydrocarbons... [Pg.259]

Blast overpressures calculated by the TNT-equivalency method are in reasonable agreement with the overpressures deduced from observed damage (Sadee et al. 1976/1977). This is to be expected, because the Flixborough incident is one of the major vapor cloud explosion incidents on which the TNT-equivalency value of... [Pg.273]

In this section, the blast from the BLEVE will be investigated but not the blast which may be caused by a vapor cloud explosion. A variation in the calculation method will be presented. Instead of determination of blast parameters at a given distance from the explosion, the distance at which a given overpressure is reached will be calculated. The distance to which fragments may be thrown will be calculated in Section 9.3. [Pg.305]

Vapor cloud explosion The explosion resulting from the ignition of a cloud of flammable vapor, gas, or mist in which flame speeds accelerate to sufficiently high velocities to produce significant overpressure. [Pg.400]

Different materials pose different hazards, including thermal radiation, explosion overpressure, and toxic and flammable vapor clouds. Some materials pose only one hazard, while others may pose all four. For the purposes of ranking facilities you will need to estimate the laigest area affected by the potential hazards. You can arrive at such an estimate by calculating the greatest downwind distance to a particular level of hazatd. The following thresholds are commonly applied ... [Pg.125]

Facilities can be ranked based on the sum of the maximum hazard distances for each release. Only one hazard distance should be used for each release, even if there is the potential for more than one hazard (thermal radiation, explosion overpressure, toxic cloud and flammable vapor cloud). The highest-ranked facility will be the one whose potential releases would reach the greatest total distance. [Pg.126]

The TNT equivalency method also uses an overpressure curve that applies to point source detonations of TNT. Vapor cloud explosions (VCEs) are explosions that occur because of the release of flammable vapor over a large volume and are most commonly deflagrations. In addition, the method is unable to consider the effects of flame speed acceleration resulting from confinement. As a result, the overpressure curve for TNT tends to overpredict the overpressure near the VCE and to underpredict at distances away from the VCE. [Pg.270]


See other pages where Vapor cloud overpressures is mentioned: [Pg.95]    [Pg.95]    [Pg.465]    [Pg.2270]    [Pg.2321]    [Pg.1012]    [Pg.60]    [Pg.435]    [Pg.3]    [Pg.4]    [Pg.5]    [Pg.69]    [Pg.82]    [Pg.113]    [Pg.116]    [Pg.126]    [Pg.147]    [Pg.273]    [Pg.11]    [Pg.18]    [Pg.58]    [Pg.134]   
See also in sourсe #XX -- [ Pg.95 , Pg.96 ]




SEARCH



Overpressure

Overpressuring

Overpressurization

Vapor cloud

© 2024 chempedia.info