Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valency covalency

The modem theory of valency is not simple—it is not possible to assign in an unambiguous way definite valencies to the various atoms in a molecule or crystal. It is instead necessary to dissociate the concept of valency into several new concepts—ionic valency, covalency, metallic valency, oxidation number—that are capable of more precise treatment and even these more precise concepts in general involve an approximation, the complete description of the bonds between the atoms in a molecule or crystal being given only by a detailed discussion of its electronic structure. Nevertheless, these concepts, of ionic valency, covalency, etc., have been found to be so useful as to justify our considering them as constituting the modern theory of valency. [Pg.227]

Some indication of the periodicity in properties of elements in the sequence of atomic numbers will be evident in the discussion of valence, covalent radii, and packing radii of atoms in the following pages. [Pg.22]

Keywords Bond geometry Bond valences Covalent bonds Hydrogen bonds Ionic model Lewis acids and bases Lone pairs Teaching Valence matching... [Pg.233]

Simple metals like alkalis, or ones with only s and p valence electrons, can often be described by a free electron gas model, whereas transition metals and rare earth metals which have d and f valence electrons camiot. Transition metal and rare earth metals do not have energy band structures which resemble free electron models. The fonned bonds from d and f states often have some strong covalent character. This character strongly modulates the free-electron-like bands. [Pg.129]

The simplest example is that of tire shallow P donor in Si. Four of its five valence electrons participate in tire covalent bonding to its four Si nearest neighbours at tire substitutional site. The energy of tire fiftli electron which, at 0 K, is in an energy level just below tire minimum of tire CB, is approximated by rrt /2wCplus tire screened Coulomb attraction to tire ion, e /sr, where is tire dielectric constant or the frequency-dependent dielectric function. The Sclirodinger equation for tliis electron reduces to tliat of tlie hydrogen atom, but m replaces tlie electronic mass and screens the Coulomb attraction. [Pg.2887]

The concept of oxidation states is best applied only to germanium, tin and lead, for the chemistry of carbon and silicon is almost wholly defined in terms of covalency with the carbon and silicon atoms sharing all their four outer quantum level electrons. These are often tetrahedrally arranged around the central atom. There are compounds of carbon in which the valency appears to be less than... [Pg.162]

It also forms compounds known as carbonyls with many metals. The best known is nickel tetracarbonyl, Ni(CO)4, a volatile liquid, clearly covalent. Here, donation of two electrons by each carbon atom brings the nickel valency shell up to that of krypton (28 -E 4 x 2) the structure may be written Ni( <- 0=0)4. (The actual structure is more accurately represented as a resonance hybrid of Ni( <- 0=0)4 and Ni(=C=0)4 with the valency shell of nickel further expanded.) Nickel tetracarbonyl has a tetrahedral configuration,... [Pg.179]

Covalent bonding in F2 gives each fluonne eight electrons in its valence shell and a stable electron configuration equivalent to that of the noble gas neon... [Pg.13]

Moving now to nitrogen we see that it has four covalent bonds (two single bonds + one double bond) and so its electron count is 5(8) = 4 A neutral nitrogen has five electrons m its valence shell The electron count for nitrogen m nitric acid is one less than that of a neutral nitrogen atom so its formal charge is +1... [Pg.18]

When writing a Lewis structure we restrict a molecule s electrons to certain well defined locations either linking two atoms by a covalent bond or as unshared electrons on a sm gle atom Sometimes more than one Lewis structure can be written for a molecule espe cially those that contain multiple bonds An example often cited m introductory chem istry courses is ozone (O3) Ozone occurs naturally m large quantities m the upper atmosphere where it screens the surface of the earth from much of the sun s ultraviolet rays Were it not for this ozone layer most forms of surface life on earth would be dam aged or even destroyed by the rays of the sun The following Lewis structure for ozone satisfies fhe ocfef rule all fhree oxygens have eighf elecfrons m fheir valence shell... [Pg.24]

Section 1 3 The most common kind of bonding involving carbon is covalent bond ing A covalent bond is the sharing of a pair of electrons between two atoms Lewis structures are written on the basis of the octet rule, which limits second row elements to no more than eight electrons m their valence shells In most of its compounds carbon has four bonds... [Pg.47]

We 11 begin our discussion of hydrocarbons by introducing two additional theories of covalent bonding the valence bond model and the molecular orbital model... [Pg.58]

The characteristic feature of valence bond theory is that it pictures a covalent bond between two atoms in terms of an m phase overlap of a half filled orbital of one atom with a half filled orbital of the other illustrated for the case of H2 m Figure 2 3 Two hydrogen atoms each containing an electron m a Is orbital combine so that their orbitals overlap to give a new orbital associated with both of them In phase orbital overlap (con structive interference) increases the probability of finding an electron m the region between the two nuclei where it feels the attractive force of both of them... [Pg.60]

In valence bond theory a covalent bond is described m terms of m phase overlap of a half filled orbital of one atom with a half filled orbital of another When applied to bonding m H2 the orbitals involved are the Is orbitals of two hydrogen atoms and the bond is a ct bond... [Pg.95]

The electron counts of nitrogen in ammonium ion and boron in borohydride ion are both 4 (half of eight electrons in covalent bonds) Because a neutral nitrogen has five electrons in its valence shell an electron count of 4 gives it a formal charge of +1 A neutral boron has three valence electrons so that an electron count of 4 in borohydride ion corresponds to a formal charge of -1... [Pg.1199]

Formal charge (Section 1 6) The charge either positive or negative on an atom calculated by subtracting from the number of valence electrons in the neutral atom a number equal to the sum of its unshared electrons plus half the elec trons in its covalent bonds... [Pg.1284]

Electronegativity x is the relative attraction of an atom for the valence electrons in a covalent bond. It is proportional to the effective nuclear charge and inversely proportional to the covalent radius ... [Pg.303]

The absence of an electron from a covalent bond leaves a hole and the neighboring valence electron can vacate its covalent bond to fill the hole, thereby creating a hole in a new location. The new hole can, in turn, be filled by a valence electron from another covalent bond, and so on. Hence, a mechanism is estabUshed for electrical conduction that involves the motion of valence electrons but not free electrons. Although a hole is a conceptual artifact, it can be described as a concrete physical entity to keep track of the motion of the valence electrons. Because holes and electrons move in opposite directions under the influence of an electric field, a hole has the same magnitude of charge as an electron but is opposite in sign. [Pg.467]

When a sibcon crystal is doped with atoms of elements having a valence of less than four, eg, boron or gallium (valence = 3), only three of the four covalent bonds of the adjacent sibcon atoms are occupied. The vacancy at an unoccupied covalent bond constitutes a hole. Dopants that contribute holes, which in turn act like positive charge carriers, are acceptor dopants and the resulting crystal is -type (positive) sibcon (Fig. Id). [Pg.467]

Where b is Planck s constant and m and are the effective masses of the electron and hole which may be larger or smaller than the rest mass of the electron. The effective mass reflects the strength of the interaction between the electron or hole and the periodic lattice and potentials within the crystal stmcture. In an ideal covalent semiconductor, electrons in the conduction band and holes in the valence band may be considered as quasi-free particles. The carriers have high drift mobilities in the range of 10 to 10 cm /(V-s) at room temperature. As shown in Table 4, this is the case for both metallic oxides and covalent semiconductors at room temperature. [Pg.357]


See other pages where Valency covalency is mentioned: [Pg.12]    [Pg.12]    [Pg.110]    [Pg.114]    [Pg.148]    [Pg.285]    [Pg.114]    [Pg.115]    [Pg.2202]    [Pg.2222]    [Pg.2391]    [Pg.56]    [Pg.58]    [Pg.251]    [Pg.313]    [Pg.155]    [Pg.18]    [Pg.1282]    [Pg.303]    [Pg.80]    [Pg.357]    [Pg.359]    [Pg.466]    [Pg.467]    [Pg.469]    [Pg.384]    [Pg.67]    [Pg.419]    [Pg.278]    [Pg.440]    [Pg.8]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



© 2024 chempedia.info