Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valence states limitations

Iron(II) can be analy2ed by a luminol—air reaction in the absence of hydrogen peroxide (276). Iron in the aqueous sample is reduced to iron(II) by sulfite other metals which might interfere are also reduced to valence states that are inactive in the absence of hydrogen peroxide. The detection limit is 10 ° M. [Pg.274]

Vanadium. Vanadium differs from the other drier metals because its greatest stability is at the higher valence state. A considerable disadvantage is its propensity to stain the final film. Vanadium also seems to be particularly prone to loss of dry problems, which again limits its use. [Pg.221]

The exhibition of variable valency is indeed a characteristic of transition metals. Main group metal ions such as those of groups 1 or 2 exhibit a single valence state. Other main group metals may show a number of valencies (usually two) which are related by a change in oxidation state of two units. This is typified by the occurrence of lead(iv) and lead(ii) or thallium(iii) and thallium(i). However, all the transition metals exhibit a range of valencies that is generally not limited in this manner. [Pg.18]

The induced co-deposition concept has been successfully exemplified in the formation of metal selenides and tellurides (sulfur has a different behavior) by a chalcogen ion diffusion-limited process, carried out typically in acidic aqueous solutions of oxochalcogenide species containing quadrivalent selenium or tellurium and metal salts with the metal normally in its highest valence state. This is rather the earliest and most studied method for electrodeposition of compound semiconductors [1]. For MX deposition, a simple (4H-2)e reduction process may be considered to describe the overall reaction at the cathode, as for example in... [Pg.80]

Only for a special class of compound with appropriate planar symmetry is it possible to distinguish between (a) electrons, associated with atomic cores and (7r) electrons delocalized over the molecular surface. The Hiickel approximation is allowed for this limited class only. Since a — 7r separation is nowhere perfect and always somewhat artificial, there is the temptation to extend the Hiickel method also to situations where more pronounced a — ix interaction is expected. It is immediately obvious that a different partitioning would be required for such an extension. The standard HMO partitioning that operates on symmetry grounds, treats only the 7r-electrons quantum mechanically and all a-electrons as part of the classical molecular frame. The alternative is an arbitrary distinction between valence electrons and atomic cores. Schemes have been devised [98, 99] to handle situations where the molecular valence shell consists of either a + n or only a electrons. In either case, the partitioning introduces extra complications. The mathematics of the situation [100] dictates that any abstraction produce disjoint sectors, of which no more than one may be non-classical. In view if the BO approximation already invoked, only the valence sector could be quantum mechanical9. In this case the classical remainder is a set of atomic cores in some unspecified excited state, called the valence state. One complication that arises is that wave functions of the valence electrons depend parametrically on the valence state. [Pg.392]

As this abbreviated review has indicated there is no universally accepted interpretation of Cl shifts in iron compounds, and most of the empirical correlations that have been found are limited to either one spin state, or to one or two valence states. In most cases it is clear that the failure to find extended agreement between data and theory is because the theory has been forced to a limit where its approximations are no longer valid. Probably the main reason for the limited success of empirical correlations—e.g., the Cl shift with the nepheleuxetic and spectrochemical series or with electronegativity differences—is that the Cl shift depends on electron density distributions while the other quantities by-and-large depend on, or are measures of, electronic energy level differences. Since there is usually no simple relationship between the two quantities, the limited agreement is not surprising. It is clear that the... [Pg.102]

Figure 8.22A shows the Eh-pH diagram of iron in the Fe-O-H system at T = 25 °C and P = 1 bar. The diagram is relatively simple the limits of predominance are drawn for a solute total molality of 10 . Within the stability field of water, iron is present in the valence states 1+ and 3-I-. In figure 8.22A, it is assumed that the condensed forms are simply hematite Fe203 and magnetite Fe304. Actually, in the 3-1- valence state, metastable ferric hydroxide Fe(OH)3 and metastable goe-thite FeOOH may also form, and, in the 1+ valence state, ferrous hydroxide Fe(OH)2 may form. It is also assumed that the trivalent solute ion is simply Fe ", whereas, in fact, various aqueous ferric complexes may nucleate [i.e., Fe(OH), Fe(OH)2+, etc.]. [Pg.556]

Most transition metals of the three d-series in all their valency states exhibit ionic radii within the limits of 0.55 and 0.86 A, favourable to octahedral coordination. In fact higher coordination numbers are observed only in fluorides of the largest transition ions, above all in compounds of the lanthanide and actinide series. Therefore fluorides of those elements, though sometimes isostructural with compounds of the d-series, will not be discussed here. For information the books and reviews written by Spedding and Daane (291), Katz and Seaborg (181) and Kaiz and Sheft (182) may be consulted. [Pg.3]

The EHM will require far fewer parameters. This is easy to see, because each atom requires just one parameter for each valence atomic orbital. For C, for example, we need an ionization energy for the 2s, and one for the 2p orbitals, just two parameters (strictly, valence state ionization energies, VSIEs - see Harder Question 9).3 Each H needs only one parameter, for its Is orbital. So for an EHM program that will handle hydrocarbons in general we need only three parameters (as in Hoffmann s pioneering paper on hydrocarbons [1]). In contrast, an early but viable molecular mechanics forcefield limited to alkanes had 26 parameters [2]. The Universal Force Field, which sacrifices accuracy for wide applicability, has about 800 parameters, and the accurate and quite broadly applicable Merck Molecular Force Field 1994 (MMFF94) has about 9,000 parameters [3]. [Pg.620]

Elemental analysis of surfaces and films, high resolution (ca. 500 A) from top 1- to 20-A layer. Limited valence-state information. Depth profiling. [Pg.379]

Fig. 8.16. Reaction scheme for photoanodic dissolution of silicon in low intensity limit illustrating the competition between hole capture steps (rate constants k to k ) and electron injection steps (rate constants k to k,). The nominal valence states of the silicon intermediates are indicated. The final product Si(IV) is the soluble hexafluorosilicate species. Fig. 8.16. Reaction scheme for photoanodic dissolution of silicon in low intensity limit illustrating the competition between hole capture steps (rate constants k to k ) and electron injection steps (rate constants k to k,). The nominal valence states of the silicon intermediates are indicated. The final product Si(IV) is the soluble hexafluorosilicate species.
The copper solution in the zinc oxide characterized by the outlined analytical andphysical methods was found to exist only after mild reduction of the calcined catalyst. Before reduction, the solubility of CuO in ZnO is limited to 4-6% 44,45) and after more severe reduction, the optical spectra begin to resemble a superposition of those of pure copper metal and zinc oxide. Hence the black solute phase is metastable and does not appear to be the final product of reduction. For this reason, the dispersed copper species were assigned the valence state +1 Buiko et al. 41) visualized these copper species not as isolated Cu+ ions but rather as electron-deficient copper atoms with strong electronic overlap with the host zinc oxide lattice, particularly with neighboring oxygens whose orbitals dominate in the valence band of zinc oxide. [Pg.261]


See other pages where Valence states limitations is mentioned: [Pg.188]    [Pg.277]    [Pg.450]    [Pg.144]    [Pg.168]    [Pg.220]    [Pg.3]    [Pg.5]    [Pg.218]    [Pg.66]    [Pg.206]    [Pg.67]    [Pg.598]    [Pg.195]    [Pg.93]    [Pg.8]    [Pg.51]    [Pg.166]    [Pg.167]    [Pg.112]    [Pg.10]    [Pg.439]    [Pg.304]    [Pg.318]    [Pg.61]    [Pg.17]    [Pg.181]    [Pg.139]    [Pg.31]    [Pg.283]    [Pg.304]    [Pg.405]    [Pg.93]    [Pg.256]    [Pg.232]    [Pg.171]    [Pg.183]    [Pg.768]   
See also in sourсe #XX -- [ Pg.252 , Pg.253 , Pg.254 ]




SEARCH



Valence state

© 2024 chempedia.info