Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valence bond theory coordinates

Note to the student The AP chemistry exam does not emphasize complex ions or coordination compounds. There is nothing on the AP exam that involves the concepts of crystal-field theory, low versus high spin, valence bond theory, or other related areas. If you understand the questions presented here, then you are basically "safe" in this area of the exam. Most high school AP chemistry programs do not focus much on this area of chemistry because of time constraints. [Pg.116]

The combination of modem valence bond theory, in its spin-coupled (SC) form, and intrinsic reaction coordinate calculations utilizing a complete-active-space self-consistent field (CASSCF) wavefunction, is demonstrated to provide quantitative and yet very easy-to-visualize models for the electronic mechanisms of three gas-phase six-electron pericyclic reactions, namely the Diels-Alder reaction between butadiene and ethene, the 1,3-dipolar cycloaddition of fulminic acid to ethyne, and the disrotatory electrocyclic ringopening of cyclohexadiene. [Pg.327]

The model that largely replaced valence bond theory for interpreting the chemistry of coordination compounds was Ihe crystal field theory, first proposed in 1929 by Hans Bethe.11 As originally conceived, it was a model based on a purely electrostatic... [Pg.209]

Chapter 11 Coordination Chemistry Bonding, Spectra, and Magnetism 387 Bonding in Coordination Compounds 391 Valence Bond Theory 391 Crystal Field Theory 394 Molecular Orbital Theory 413 Electronic Spectra of Complexes 433 Magnetic Properties of Complexes 459... [Pg.543]

According to the valence bond theory (Section 7.10), the bonding in metal complexes arises when a filled ligand orbital containing a pair of electrons overlaps a vacant hybrid orbital on the metal ion to give a coordinate covalent bond ... [Pg.894]

Valence bond theory describes the bonding in complexes in terms of two-electron, coordinate covalent bonds resulting from the overlap of filled ligand orbitals with vacant metal hybrid orbitals that point in the direction of the ligands sp (linear), sp3 (tetrahedral), dsp2 (square planar), and d2sp3 or sp3d2 (octahedral). [Pg.904]

It will now be clear that the accuracy that may be attained in crystal analysis depends on the number of observed reflections and on the precision with which their intensities can be measured. (We assume that the structure is not complicated by any randomness or disorder, and that the necessary absorption and extinction corrections can be made.) A very useful discussion of the requirements necessary for determining bond lengths to within a limit of error of 0-01 A has been given by Cruickshank (1960). This is, of course, a very ambitious limit, but if it could be achieved it would enable the predictions of the molecular-orbital and valence-bond theories in aromatic hydrocarbons to be distinguished. It is pointed out that at the 0-1% level of significance a bond length difference must be 3-3 times the standard deviation to be accepted as genuine, so the limit of error of 0-01 A would require an e.s.d. (estimated standard deviation) of 0-003 A or better in the bond difference, or a coordinate e.s.d. of 0-0015 A or better. [Pg.221]

In valence bond theory, the coordination number of an atom in a molecule or covalent solid is generally Umited to the number of valence orbitals on the atom. Likewise, only... [Pg.122]

In the following pages, the valence bond theory and the crystal field theory are described very briefly to set more recent developments in their historical context. The rest of the chapter describes the ligand field theory and the method of angular overlap, which can be used to estimate the orbital energy levels. These two supply the basic approach to bonding in coordination compounds for the remainder of the book. [Pg.342]

The application of organometallic compounds in medicine, pharmacy, agriculture and industry requires the accurate determination of these metals as part of their application. Most % complexes characterised by direct carbon-to-carbon metal bonding may be classified as organometallic and the nature and characteristics of the n ligands are similar to those in the coordination metal-ligand complexes. The -complex metals are the least satisfactorily described by crystal field theory (CFT) or valence bond theory (VBT). They are better treated by molecular orbital theory (MOT) and ligand field theory (LFT). There are several uses of metal 7i-complexes and metal catalysed reactions that proceed via substrate metal rc-complex intermediate. Examples of these are the polymerisation of ethylene and the hydration of olefins to form aldehydes as in the Wacker process of air oxidation of ethylene to produce acetaldehyde. [Pg.236]

Bonding theories for coordination compounds should be able to account for structural features, colors, and magnetic properties. The earliest accepted theory was the valence bond theory (Chapter 8). It can account for structural and magnetic properties, but it offers no explanation for the wide range of colors of coordination compounds. The crystal field theory gives satisfactory explanations of color as well as of structure and magnetic properties for many coordination compounds. We will therefore discuss only this more successful theory in the remainder of this chapter. [Pg.991]

As stated by Chatt and co-workers, their early speculation on the role of trans-n bonding groups in ligand substitution of platinum(ii) complexes was based on the assumption that the reactions proceed by an 8 2 mechanism. However, at the time (1955) most of the observations reported on such reactions were qualitative and little had been done to use detailed kinetic studies in attempts to elucidate the mechanism of ligand substitution. Since the valence bond theory in use then assigned dsp hybridisation to the square-planar plati-num(ii) complexes, coordination chemists believed an entering nucleophile would readily attack the low energy vacant p orbital on the metal and substitution would take place by an 8 2 mechanism. Furthermore, a coordination... [Pg.316]


See other pages where Valence bond theory coordinates is mentioned: [Pg.17]    [Pg.395]    [Pg.263]    [Pg.122]    [Pg.254]    [Pg.741]    [Pg.928]    [Pg.824]    [Pg.263]    [Pg.38]    [Pg.307]    [Pg.2730]    [Pg.5208]    [Pg.6]    [Pg.254]    [Pg.344]    [Pg.824]    [Pg.730]    [Pg.775]    [Pg.199]    [Pg.1]    [Pg.3]    [Pg.49]    [Pg.391]    [Pg.485]   
See also in sourсe #XX -- [ Pg.207 , Pg.208 , Pg.209 ]




SEARCH



Bond theory

Bonding coordinate

Bonding theory

Bonds valence bond theory

Coordinate bond

Coordination bonding

Coordination chemistry valence bond theory

Coordination compounds valence bond theory

Coordination theory

Coordinative bonding

Coordinative bonding coordinate

Coordinative valency

Transition metal complexes (coordination valence bond theory

Valence bond theory

Valence coordinates

Valence theory

Valency theory

© 2024 chempedia.info