Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Use of Metastable Ion and CID Data

The importance of linked scanning of metastable ions or of ions formed by induced decomposition is discussed in this chapter and in Chapter 34. Briefly, linked scanning provides information on which ions give which others in a normal mass spectrum. With this sort of information, it becomes possible to examine a complex mixture of substances without prior separation of its components. It is possible to look highly specifically for trace components in mixtures under circumstances in which other techniques could not succeed. Finally, it is possible to gain information on the molecular structures of unknown compounds, as in peptide and protein sequencing (see Chapter 40). [Pg.235]

Metastable and collisionally induced fragment ions can be detected efficiently by a triple quadrupole instmment. By linking the scanning regions of the first and third quadrupoles, important information about molecular structure is easily obtained. [Pg.235]

Linked Scanning and Metastable Ions in Magnetic-Sector Mass Spectrometry [Pg.237]

The study of metastable ions concerns substances that have been ionized by electrons and have undergone fragmentation. The stable molecular ions that are formed by soft ionization methods (chemical ionization. Cl field ionization, FI) need a boost of extra energy to make them fragment, but in such cases other methods of investigation than linked scanning are generally used. [Pg.237]

Scanning for metastable ions requires adjustment of electric and magnetic fields which can be adjusted individually or in conjunction with each other. If two fields are automatically adjusted at the same time, it is known as linked scanning. It is important to remember that metastable ions are not the product ions m2 but are the ions undergoing fragmentation (precursor ions mj). [Pg.238]


In obtaining experimental information about the isomeric forms of ions, a variety of techniques have been used. These include ion cyclotron resonance (ICR),31 flow tube techniques, notably the selected ion flow tube (SIFT),32 and the selected ion flow drift tube (SIFDT)32 (and its simpler variant33), collision induced dissociation (CID),10,11 and the decomposition of metastable ions in mass spectrometers.13 All of these techniques are mentioned in the text of Section in whore they have provided data relevant to the present review. [Pg.87]

In the following sections, studies of isomeric ions are reported in which the ions are reactively probed. Where calculations are available, information on potential energy surfaces is given. This is usually the structure of the stable isomeric forms and transition states and their relative energies thus only points on the potential surface are known. The detailed form of the potential surface is almost never available nor is the connectivity between the various states usually established theoretically (chemical intuition is often used to connect the states). Pertinent experimental data on CID and metastable ions, isomers produced in binary reactions, and potential surfaces probed by binary reactions (with the excited isomeric ion as the reaction intermediate) are also given. [Pg.89]


See other pages where Use of Metastable Ion and CID Data is mentioned: [Pg.235]    [Pg.236]    [Pg.235]    [Pg.236]    [Pg.148]    [Pg.137]   


SEARCH



CID

Data used

Metastable

Metastable ions

Use, data

Useful Data

© 2024 chempedia.info